cho a;b;c thỏa mãn: \(\dfrac{b-c}{\left(a-b\right)\left(a-c\right)}+\dfrac{c-a}{\left(b-a\right)\left(b-c\right)}+\dfrac{a-b}{\left(c-a\right)\left(c-b\right)}=2024\). Tính giá trị biểu thức Q=\(\dfrac{1}{a-b}+\dfrac{1}{b-c}+\dfrac{1}{c-a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
Lời giải:
$\frac{b-c}{(a-b)(a-c)}+\frac{c-a}{(b-a)(b-c)}+\frac{a-b}{(c-a)(c-b)}=2024$
$\Rightarrow \frac{(a-c)-(a-b)}{(a-b)(a-c)}+\frac{(b-a)-(b-c)}{(b-a)(b-c)}+\frac{(c-b)-(c-a)}{(c-a)(c-b)}=2024$
$\Rightarrow \frac{1}{a-b}-\frac{1}{a-c}+\frac{1}{b-c}-\frac{1}{b-a}+\frac{1}{c-a}-\frac{1}{c-b}=2024$
$\Rightarrow \frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}=2024$
$\Rightarrow 2(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a})=2024$
$\Rightarrow 2Q=2024$
$\Rightarrow Q=1012$