Cho các số nguyên a;b;c sao cho:ab-c2+bc-ac+1=0
Tính GTBT A=(a+b)3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A là phân số ⇔ x + 5 ≠ 0 ⇔ x ≠ -5
b) A là một số nguyên ⇔ (x – 2) ⋮ ( x + 5)
Ta có: x – 2 = [(x + 5) – 7] ⋮ ( x + 5) ⇔ 7 ⋮ ( x + 5) ⇔ x + 5 là ước của 7
x + 5 ∈ { 1 ; -1 ; 7 ; -7 }
x ∈ { -4 ; -6 ; 2 ; -12 }
a) Để A là phân số thì:
n - 3 \(\ne\)0
\(\Rightarrow\)n \(\ne\)3
b) Để A là một số nguyên thì 7 \(⋮\)( n - 3 )
\(\Rightarrow\)n - 3 \(\in\)Ư(7)
Ư(7) = { 1 ; -1 ; 7 ; -7 }
\(\Rightarrow\)n - 3 \(\in\){ 1 ; -1 ; 7 ; -7 }
\(\Rightarrow\)n \(\in\){ 4 ; 3 ; 10 ; -4 }
Vậy n \(\in\){ 4 ; 3 ; 10 ; -4 }
a ) Để A là phân số => n - 3 \(\ne\)0 => n \(\ne\)3
Vậy n khác 3 thì A là phân số
b ) Để A thuộc Z
=> 7 \(⋮\)n - 3
=> n - 3 thuộc Ư ( 7 ) = { - 7 ; - 1 ; 1 ; 7 }
=> n thuộc { - 4 ; 2 ; 4 ; 10 }
a) Ta có :
Để : \(A\text{=}\dfrac{n-2}{n+5}\) là phân số \(\Leftrightarrow A\text{=}mẫu\left(n+5\right)\ne0\)
\(\Leftrightarrow n\ne-5\)
Vậy để A là phân số \(\Leftrightarrow n\ne5\)
b) Ta có : \(A\text{=}\dfrac{n-2}{n+5}\text{=}\dfrac{n+5-7}{n+5}\text{=}\dfrac{n+5}{n+5}-\dfrac{7}{n+5}\text{=}1-\dfrac{7}{n+5}\)
Để : \(A\in Z\Leftrightarrow\dfrac{7}{n+5}\in Z\Leftrightarrow n+5\inƯ\left(7\right)\)
mà \(Ư\left(7\right)\text{=}\left(1;-1;7;-7\right)\)
\(\Rightarrow n\in\left(-4;-6;2;-12\right)\)
\(Vậy...\)
a,
7 ⋮ n + 1 (đk n ≠ - 1)
n + 1 \(\in\) Ư(7) = {-7; - 1; 1; 7}
Lập bảng ta có:
n + 1 | -7 | - 1 | 1 | 7 |
n | -8 | -2 | 0 | 6 |
Theo bảng trên ta có:
n \(\in\) {-8; -2; 0; 6}
b, (2n + 5) ⋮ (n + 1) Đk n ≠ - 1
2n + 2 + 3 ⋮ n + 1
2.(n + 1) + 3 ⋮ n + 1
3 ⋮ n + 1
n + 1 \(\in\) Ư(3) = {-3; -1; 1; 3}
Lập bảng ta có:
n + 1 | - 3 | -1 | 1 | 3 |
n | -4 | -2 | 0 | 2 |
Theo bảng trên ta có:
n \(\in\) {-4; -2; 0; 2}
\(ab+bc-c^2-ac+1=0\)
\(< =>b\left(a+c\right)-c\left(a+c\right)+1=0\)
\(< =>\left(b-c\right)\left(a+c\right)=-1\)
\(< =>a+b=0\)
\(< =>A=\left(a+b\right)^3=0^3=0\)
không hiểu thì hỏi mình chỉ cho
Ta có ab - c2 + bc - ac + 1 = 0
=> (ab + bc) - (ac + c2) + 1 = 0
=> b(a + c) -c(a + c) + 1 = 0
=> (b - c)(a + c) = - 1 (1)
Vì a;b;c nguyên
=> \(\hept{\begin{cases}b-c\inℤ\\a+c\inℤ\end{cases}}\)
Ta có -1 = (-1).1 = 1.(-1)
Khi đó (b - c)(a + c) = 1.(-1) = (-1).1
Nếu \(\hept{\begin{cases}b-c=1\\a+c=-1\end{cases}}\Rightarrow b-c+a+c=0\Rightarrow a+b=0\)
Nếu \(\hept{\begin{cases}b-c=-1\\a+c=1\end{cases}}\Rightarrow a+c+b-c=0\Rightarrow a+b=0\)
Vậy a + b = 0
Khi đó A = 03 = 0