cho a;b;c là số tự nhiên thỏa mãn a^2+b^2=c^2.CMR trong 2 số a ; b chứa ít nhất 1 số chia hết cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
phản chứng
giả sử cả 3 số đèu lẻ
a=2n+1; b=2m+1; c=2p+1
Thay vào
(2n+1)^2+(2m+1)^2=(2p+1)^2
nhân phân phối ra
(4n^2+4n+1)+(4m^2+4m+1)=(4p^2+4p+1)
gom lại
2.(2n^2+2n+2m^2+2m+1)=4p(p+1)+1
Vế trái luôn chắn
vế phải luôn lẻ với mọi (n,m,p thuộc N) => không tồn tại (n,m,p)
=> dpcm