Biết a;b;c là 3 số thực thỏa mãn điều kiện :a=b+1=c+2;c>0
Chứng minh : \(2\left(\sqrt{a}-\sqrt{b}\right)< \dfrac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: sin a=2/3
=>cos^2a=1-(2/3)^2=5/9
=>\(cosa=\dfrac{\sqrt{5}}{3}\)
\(tana=\dfrac{2}{3}:\dfrac{\sqrt{5}}{3}=\dfrac{2}{\sqrt{5}}\)
\(cota=1:\dfrac{2}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)
b: cos a=1/5
=>sin^2a=1-(1/5)^2=24/25
=>\(sina=\dfrac{2\sqrt{6}}{5}\)
\(tana=\dfrac{2\sqrt{6}}{5}:\dfrac{1}{5}=2\sqrt{6}\)
\(cota=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{12}\)
c: cot a=1/tana=1/2
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>1/cos^2a=1+4=5
=>cos^2a=1/5
=>cosa=1/căn 5
\(sina=\sqrt{1-cos^2a}=\dfrac{2}{\sqrt{5}}\)
abc:(a+b+c)=100
aba=(a+b+c)x100
abc=a x100+bx100+cx100
ax100+bx10+c=ax100+bx100+cx100
( đề có vẻ sai )
abc:(a+b+c)=100
aba=(a+b+c)x100
abc=a x100+bx100+cx100
ax100+bx10+c=ax100+bx100+cx100
( đề có vẻ sai ) Nếu bn cảm thấy đúng thì k cho mình nhé!Học Tốt
a: a/b=45/60
b: a/b=3/5=90/150
c: a/b=36/45=4/5=60/75
a) NHận thấy:
102:12=8 dư 6
Vậy q=8;r=6 để 102=12x8+6
b) Nhận thấy:
a=12x3+5
a=36+5
a=41
c) không biết làm
d) Ta có:
51-0=bxq
51=bxq
Mà 51=17x3
=1x51
Suy ra b=17 thì q=3
q=17 thì b=3
b=51 thì q=1
q=51 thì b=1
a) Từ \(a=b.q+r\) nên \(q=a:b\) và r là số dư của phép chia này
q = 102 : 12 = 8 (dư r = 6)
b), c) d) tương tự thế mà làm nhé !
Áp dụng tính chất chia hết của một tổng ta có:
a ⋮ 9 a + b ⋮ 9 ⇔ b ⋮ 9
Ta có a=b+1\(\Rightarrow a-b=1\Rightarrow a>b\left(1\right)\)
\(b+1=c+2\Rightarrow b-c=1\Rightarrow b>c>0\left(2\right)\)
Từ (1),(2)\(\Rightarrow a>b>c>0\)
Ta lại có \(a-b=1\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=1\Leftrightarrow\sqrt{a}-\sqrt{b}=\dfrac{1}{\sqrt{a}+\sqrt{b}}< \dfrac{1}{\sqrt{b}+\sqrt{b}}\Leftrightarrow\sqrt{a}-\sqrt{b}< \dfrac{1}{2\sqrt{b}}\Leftrightarrow2\left(\sqrt{a}-\sqrt{b}\right)< \dfrac{1}{\sqrt{b}}\)(3)
Chứng minh tương tự, ta có:
\(b-c=1\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)=1\Leftrightarrow\sqrt{b}-\sqrt{c}=\dfrac{1}{\sqrt{b}+\sqrt{c}}>\dfrac{1}{\sqrt{b}+\sqrt{b}}\Leftrightarrow\dfrac{1}{2\sqrt{b}}< \sqrt{b}-\sqrt{c}\Leftrightarrow\dfrac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\)(4)
Từ (3),(4)\(\Rightarrow2\left(\sqrt{a}-\sqrt{b}\right)< \dfrac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\)