Cho a;b;c là 3 cạnh tam giác thỏa mãn \(2c+b=abc\) . Tìm GTNN của biểu thức
\(A=\frac{3}{-a+b+c}+\frac{4}{a-b+c}+\frac{5}{a+b-c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
làm lại dong cuối:\(A\ge\frac{2}{c}+\frac{4}{b}+\frac{6}{a}\)
Mà:\(2c+b=abc\Rightarrow a=\frac{2c+b}{cb}=\frac{2}{b}+\frac{1}{c}\)
\(\Rightarrow2a=\frac{4}{b}+\frac{2}{c}\)
\(\Rightarrow A\ge2a+\frac{6}{a}\)
Ta có:\(A=\left(\frac{1}{b+c-a}+\frac{1}{a+c-b}\right)+2\left(\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)\)
\(+3\left(\frac{1}{a+c-b}+\frac{1}{a+b-c}\right)\)
\(\ge\frac{2}{c}+\frac{4}{b}+\frac{6}{c}\) (Do a,b,c là 3 cạnh của tam giác nên:\(\hept{\begin{cases}a+b-c>0\\a+c-b>0\\c+b-a>0\end{cases}}\)
\(=\frac{6}{a}+2a\ge4\sqrt{3}\left(cosi\right)\left(a>0\right)\)
Dấu = xảy ra khi:
\(a=b=c=\sqrt{3}\)