2^2+2^3+2^4+2^5+2^6+2^7
a có chia hết cho 3 ko;có chia hết cho 7 ko
b,B=3+3^2+3^3+3^4+...+3^1016
B có chia hết cho 4 ,13,10,20,40 ko
Các bạn cố giúp mik nha mik fari nộp gấp rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: P = 1 + 2 + 22 + 23 + ... + 2199 (Có 200 số hạng)
= (1 + 2) + (22 + 23) + ... + (2198 + 2199)
= 1.(1 + 2) + 2.(1 + 2) + ... + 2198.(1 + 2)
= (1 + 2).(1 + 2 + ... + 2198)
= 3.(1 + 2 + ... + 2198)
Vì \(3⋮3\)nên \(\text{3.(1 + 2 + ... + 2198)}⋮3\)
b) Bạn làm tương tự nha
Bài 1:
B = 1 + 2 + 3 + 4 + ... + 2001
= (2001 + 1) . (2001 - 1 + 1) : 2
= 2002 . 2001 : 2
= 2003001
Vậy B không chia hết cho 2
Bài 2:
*) Số 10¹⁰ + 8 = 10000000008
- Có chữ số tận cùng là 8 nên chia hết cho 2
- Có tổng các chữ số là 1 + 8 = 9 nên chia hết cho cả 3 và 9
Vậy 10¹⁰ + 8 chia hết cho cả 2; 3 và 9
*) 10¹⁰⁰ + 5 = 1000...005 (99 chữ số 0)
- Có chữ số tận cùng là 5 nên chia hết cho 5
- Có tổng các chữ số là 1 + 5 = 6 nên chia hết cho 3
Vậy 10¹⁰⁰ + 5 chia hết cho cả 3 và 5
b) 10⁵⁰ + 44 = 100...0044 (có 48 chữ số 0)
- Có chữ số tận cùng là 4 nên chia hết cho 2
- Có tổng các chữ số là 1 + 4 + 4 = 9 nên chia hết cho 9
Vậy 10⁵⁰ + 44 chia hết cho cả 2 và 9
B1 :
\(B=1+2+3+4+...+2001\)
\(B=\left[\left(2001-1\right):1+1\right]\left(2001+1\right):2\)
\(B=2001.2002:2=2003001\)
- Tận cùng là 1 nên B không chia hết cho 2
- Tổng các chữ số là 2+3+1=6 chia hết cho 3 nên B chia hết cho 3, không chia hết ch0 9
- Ta lấy \(2.3=6+0=6.3+0-14=4.3+3-14=1.3+0=3.3+0-7=2.3+1=7⋮7\) \(\Rightarrow B⋮7\)
a) chia hết cho 2
b) chia hết cho 5
c) chia hết cho 2
d) Chia hết cho 5.
A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^10
=(2+2^2)+(2^3+2^4)+(2^5+2^6)+(2^7+2^8)+(2^9+2^10)
=2(1+2)+2^3(1+2)+2^5(1+2)+2^7(1+2)+2^9(1+2)
=(1+2)(2+2^3+2^5+2^7+2^9)
=3(2+2^3+2^5+2^7+2^9) chia hết cho 3