K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 10 2019

Đề bài sai nhé

Đẳng thức này mới đúng: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=\frac{a}{d}\)

NV
30 tháng 10 2019

\(\left\{{}\begin{matrix}b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\\c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\end{matrix}\right.\) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Rightarrow\frac{a}{d}=\frac{abc}{bcd}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

8 tháng 8 2017

Giải:

Từ \(\left\{{}\begin{matrix}b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\\c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\end{matrix}\right.\) \(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Theo tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b-c}{b+c-d}\)

\(\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}\left(1\right)\)

\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}\left(2\right)\)

Kết hợp \(\left(1\right)\)\(\left(2\right)\) suy ra:

\(\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}=\dfrac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}\) (Đpcm)

10 tháng 12 2017

Ko bt lm

Sang mà hỏi cô í

10 tháng 12 2017

Violympic toán 7Violympic toán 7

Tau đã nói là tau ko lừa mi nha!!!

11 tháng 12 2018

Ta có:

\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

11 tháng 12 2018

Ta có : \(b^2=ac\) 

\(\Rightarrow\frac{a}{b}=\frac{b}{c}\) (1) 

\(c^2=bd\) 

\(\Rightarrow\frac{b}{c}=\frac{c}{d}\) (2)

Từ (1) và (2) suy ra : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) 

\(\Rightarrow\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\) , \(\frac{b}{c}.\frac{b}{c}.\frac{b}{c}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\) và \(\frac{c}{d}.\frac{c}{d}.\frac{c}{d}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{a}{d}\) , \(\frac{b^3}{c^3}=\frac{a}{d}\) và \(\frac{c^3}{d^3}=\frac{a}{d}\) 

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}\) 

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) 

Vậy \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

9 tháng 2 2020

\(a^2+ab+\frac{b^2}{3}=c^2+\frac{b^2}{3}+a^2+ac+c^2\left(=25\right)\)

\(\Rightarrow a^2+ab+\frac{b^2}{3}=2c^2+\frac{b^2}{3}+a^2+ac\\ \Rightarrow ab=2c^2+ac\\ \Rightarrow ab+ac=2c^2+2ac\\ \Rightarrow a\left(b+c\right)=2c\left(a+c\right)\\ \Rightarrow\frac{2c}{a}=\frac{b+c}{a+c}\)

15 tháng 10 2016

b2 = ac => \(\frac{a}{b}=\frac{b}{c}\)

c2 = bd => \(\frac{b}{c}=\frac{c}{d}\)

=> \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

=> \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{abc}{bcd}=\frac{a}{d}\)

Theo tính chất dãy tỉ số bằng nhau

=> \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

=> Đpcm

4 tháng 9 2016

Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c};c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=k^3\)(1)

Mặt khác: Áp dụng tính chất dãy tỉ số bằng nhau ta cũng có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b-c}{b+c-d}=k\Rightarrow\left(\frac{a+b-c}{b+c-d}\right)^3=k^3\)(2)

Từ (1) và (2) ta được: \(\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\left(=k^3\right)\)

(Mình có sửa lại đề vì nếu viết mẫu của phân số thứ nhất là b3 + c3 + d3 là sai)

4 tháng 9 2016

bạn có chơi truy kich ko