Cho \(a;b;c\ge0:a^2+b^2+c^2=1\)
CMR: \(\dfrac{c}{1+ab}+\dfrac{b}{1+ac}+\dfrac{a}{1+bc}\ge1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
\(c\left(1+ab\right)\le c\left(1+\dfrac{a^2+b^2}{2}\right)=c\left(1+\dfrac{1-c^2}{2}\right)=1-\dfrac{1}{2}\left(c-1\right)^2\left(c+2\right)\le1\)
\(\Rightarrow c^2\left(1+ab\right)\le c\Rightarrow\dfrac{c}{1+ab}\ge c^2\)
Hoàn toàn tương tự ta có: \(\dfrac{a}{1+bc}\ge a^2\) ; \(\dfrac{b}{1+ac}\ge b^2\)
Cộng vế: \(VT\ge a^2+b^2+c^2=1\) (đpcm)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị
Cách 2:
Áp dụng BĐT Bunhiacopxky:
\(\text{VT}[a(1+bc)+b(1+ac)+c(1+ab)]\geq (a+b+c)^2\)
\(\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{a+b+c+3abc}\)
Ta sẽ CM:
\(\frac{(a+b+c)^2}{a+b+c+3abc}\geq 1\)
\(\Leftrightarrow 1+2(ab+bc+ac)\geq a+b+c+3abc\)
Vì $a^2+b^2+c^2=1\Rightarrow a,b,c\leq 1$
$\Rightarrow (a-1)(b-1)(c-1)\leq 0$
$\Leftrightarrow 1+ ab+bc+ac\geq a+b+c+abc(1)$
Áp dụng BĐT AM-GM:
$ab+bc+ac\geq 3\sqrt[3]{a^2b^2c^2}\geq 3\sqrt[3]{a^2b^2c^2.abc}=3abc\geq 2abc(2)$
Từ $(1);(2)\Rightarrow 1+2(ab+bc+ac)\geq a+b+c+3abc$
Ta có đpcm
Dấu "=" xảy ra khi $(a,b,c)=(1,0,0)$ và hoán vị.