cho các hệ số a;b thỏa mãn đẳng thức :1/(x^2 - 4)=a/(x-2)+b/(x+2) là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét x=o nên f(x) = c nên c chia hết cho 3
xét x=1 suy ra f(x) = a+b+c vì c chia hết cho 3 nên a+b chi hết cho 3 (1)
xét x =-1 suy ra f(x)=a-b+c chia hết cho 3 tương tự suy ra a-b chia hết cho 3 (2)
từ 1 và 2 suy ra a+b+a-b chia hết cho 3 nên 2a chia hết cho 3 mà (2,3)=1 nên a chia hết cho 3 nên b chia hết 3
2KMnO4 +16HCl → 2KCl + 2MnCl2 +5Cl2 +8H2O
⇒ a+b= 2+16= 18
ĐÁP ÁN C
Từ PT (1) ta có: y = (a + 1)x – (a + 1) (*) thế vào PT (2) ta được:
x + ( a – 1 ) [ ( a + 1 ) x – ( a + 1 ) ] = 2 x + ( a 2 – 1 ) x – ( a 2 – 1 ) = 2
⇔ a 2 x = a 2 + 1 ( 3 )
Với a ≠ 0, phương trình (3) có nghiệm duy nhất x = a 2 + 1 a 2 . Thay vào (*) ta có:
y = ( a + 1 ) a 2 + 1 a 2 − ( a + 1 ) = a + 1 a 2 + 1 − a 2 a 2 + 1 a 2 = a 3 + a + a 2 + 1 − a 3 − a 2 a 2 = a + 1 a 2
Suy ra hệ phương trình đã cho có nghiệm duy nhất ( x ; y ) = a 2 + 1 a 2 ; a + 1 a 2
Hệ phương trình có nghiệm nguyên: x ∈ ℤ y ∈ ℤ ⇔ a 2 + 1 a 2 ∈ ℤ a + 1 a 2 ∈ ℤ ( a ∈ ℤ )
Điều kiện cần: x = a 2 + 1 a 2 = 1 + 1 a 2 ∈ ℤ ⇔ 1 a 2 ∈ ℤ mà a 2 > 0 ⇒ a 2 = 1
⇔ a = ± 1 ( T M a ≠ 0 )
Điều kiện đủ:
a = −1 ⇒ y = 0 (nhận)
a = 1 ⇒ y = 2 (nhận)
Vậy a = ± 1 hệ phương trình đã cho có nghiệm nguyên.
Đáp án: D
Ta có: \(aFe_2O_3+bH_2\rightarrow cFe+dH_2O\)
*1 \(|Fe^{+3}+3e\rightarrow Fe^0\)
*3 \(|H^0_2\rightarrow H^{+1}_2+1e\)
\(\Rightarrow Fe_2O_3+3H_2\rightarrow2Fe+3H_2O\)
Tổng hệ số cân bằng:
\(1+3+2+3=9\)
Chọn B
a) A = 2x6 + (-5x3) + ( -3x5) + x3 + \(\dfrac{3}{5}{x^2}\)+(\( - \dfrac{1}{2}{x^2}\)) + 8 + ( -3x)
= 2x6 + ( -3x5) + [(-5x3) + x3 ]+ [\(\dfrac{3}{5}{x^2}\)+(\( - \dfrac{1}{2}{x^2}\))] + ( -3x) + 8
= 2x6 – 3x5 – 4x3 +\(\dfrac{1}{{10}}\)x2 – 3x + 8
b) Hệ số cao nhất: 2
Hệ số tự do: 8
Hệ số của x2 là: \(\dfrac{1}{{10}}\)
`a,`
`A=2x^6+(-5x^3)+(-3x^6)+x^3+(-3/5x^2)+(-1/2x^2)+8+(-3x)`
`A=2x^6-5x^3-3x^6+x^3-3/5x^2-1/2x^2+8-3x`
`A=(2x^6-3x^6)+(-5x^3+x^3)+(-3/5x^2-1/2x^2)-3x+8`
`A=-x^6-4x^3-1,1x^2-3x+8`
`b,`
Hệ số cao nhất của đa thức: `-1`
Hệ số tự do: `8`
Hệ số của `x^2: -1,1 (-11/10)`
a: A=2x^6-3x^6-5x^3+x^3-3/5x^2-1/2x^2-3x+8
=-x^6-4x^3-11/10x^2-3x+8
b: Hệ số cao nhất là -1
Hệ số tự do là 8
Hệ số của x^2 là -11/10
a: Thay x=-1 và y=5 vào y=ax+6, ta được:
6-x=5
hay x=1
b: Vì đồ thị hàm số y=ax+b đi qua hai điểm (1;1) và (0;-2) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=1\\b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1-b=1-\left(-2\right)=1+2=3\\b=-2\end{matrix}\right.\)
\(\frac{1}{x^2-4}=\frac{a}{x-2}+\frac{b}{x+2}\) \(\left(\text{*}\right)\)
\(ĐKXĐ:\) \(x\notin\left\{-2;2\right\}\)
Thực hiện phép cộng ở vế phải của \(\left(\text{*}\right)\), khi đó,
\(\frac{a\left(x+2\right)+b\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{ax+2a+bx-2b}{\left(x-2\right)\left(x+2\right)}=\frac{\left(a+b\right)x+2\left(a-b\right)}{\left(x-2\right)\left(x+2\right)}\)
Đồng nhất phân thức trên với phân thức \(\frac{1}{x^2-4}\), tức \(\frac{1}{\left(x-2\right)\left(x+2\right)}\), ta được:
\(a+b=0\) \(a=\frac{1}{4}\)
\(\Leftrightarrow\)
\(2\left(a-b\right)=1\) \(b=-\frac{1}{4}\)
Vậy, \(\frac{1}{x^2-4}=\frac{\frac{1}{4}}{x-2}+\frac{\left(-\frac{1}{4}\right)}{x+2}\)