Từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d};\left(a\ne c;b\ne\pm d\right)\) hãy rút ra tỉ lệ thức :
\(\dfrac{a+c}{a-c}=\dfrac{b+d}{b-d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đặt:
\(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(a=b\times k\) ; \(c=d\times k\)
a) Ta có: \(\dfrac{a}{b}=\dfrac{b\times k}{d\times k}=\dfrac{b}{d}\) (1)
=> \(\dfrac{a+b}{c+d}=\dfrac{b\times k+b}{d\times k+d}=\dfrac{b\times\left(k+1\right)}{d\times\left(k+1\right)}=\dfrac{b}{d}\) (2)
Từ (1),(2) => đpcm
b)
\(\dfrac{a+b}{a}=\dfrac{b\times k+b}{b\times k}=\dfrac{b\times\left(k+1\right)}{b\times k}=\dfrac{k+1}{k}\) (1)
\(\dfrac{c+d}{c}=\dfrac{d\times k+d}{d\times k}=\dfrac{d\times\left(k+1\right)}{d\times k}=\dfrac{k+1}{k}\) (2)
Từ (1),(2) => đpcm
\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{b}+1=\dfrac{c}{d}+1=>\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{b}-1=\dfrac{c}{d}-1=>\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}=>ad=cb=>ad+ac=cb+ac\)
\(=>a\left(c+d\right)=c\left(a+b\right)=>\dfrac{a}{c}=\dfrac{a+b}{c+d}=>\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
\(\Leftrightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a}{c}=\dfrac{b}{d}=>\dfrac{a}{b}=\dfrac{c}{d}\)
Lời giải:
$\frac{a+b}{a-b}=\frac{c+d}{c-d}$
$\Rightarrow (a+b)(c-d)=(a-b)(c+d)$
$\Rightarrow ac-ad+bc-bd=ac+ad-bc-bd$
$\Rightarrow 2ad=2bc$
$\Rightarrow ad=bc$
$\Rightarrow \frac{a}{b}=\frac{c}{d}$ (đpcm)
a) Vì \(\dfrac{a}{b} = \dfrac{c}{d}\) nên \(ad = bc\)
Ta có \(\dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\)\( \Rightarrow d(a + b) = b(c + d)\)\( \Rightarrow ad + bd = bc + bd\)
\( \Rightarrow ad = bc\) (luôn đúng)
\( \Rightarrow \dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\)
b) Vì \(\dfrac{a}{b} = \dfrac{c}{d}\) nên \(ad = bc\)
Ta có: \(\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\)
\(\begin{array}{l} \Rightarrow d(a - b) = b(c - d)\\ \Leftrightarrow ad - bd = bc - bd\\ \Leftrightarrow ad = bc\end{array}\) ( luôn đúng)
Vậy \(\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\)
c) Vì \(\dfrac{a}{b} = \dfrac{c}{d}\) nên \(ad = bc\)
Ta có: \(\dfrac{a}{{a + b}} = \dfrac{c}{{c + d}}\)
\(\begin{array}{l} \Rightarrow a(c + d) = c(a + b)\\ \Leftrightarrow ac + ad = ac + bc\\ \Leftrightarrow ad = bc\end{array}\) (luôn đúng)
Vậy \(\dfrac{a}{{a + b}} = \dfrac{c}{{c + d}}\)
a) \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1\) và \(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\)
\(\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
b) \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a-b}{b}=\dfrac{b\left(k-1\right)}{b}=k-1\\\dfrac{c-d}{d}=\dfrac{d\left(k-1\right)}{d}=k-1\end{matrix}\right.\)\(\Rightarrow\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
c) \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a}{c}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\)
d) \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a}{c}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
Ta có: \(\dfrac{a}{b} = \dfrac{c}{d}\) nên a.d = b.c
Ta suy ra được các tỉ lệ thức: \(\dfrac{a}{c} = \dfrac{b}{d};\dfrac{d}{b} = \dfrac{c}{a};\dfrac{d}{c} = \dfrac{b}{a}\)
\(\dfrac{a}{c}=\dfrac{b}{d}\\ \dfrac{a}{d}=\dfrac{c}{b}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có: \(\dfrac{a+b}{a-b}=\dfrac{bk+b}{bk-b}=\dfrac{b\left(k+1\right)}{b\left(k-1\right)}=\dfrac{k+1}{k-1}\) (1)
\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
Ta có: \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\).Theo tính chất của dãy tỉ số bằng nhau:
\(\Rightarrow\)\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)
Vì \(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)\(\Leftrightarrow\)\(\dfrac{a+b}{a-b}\)=\(\dfrac{c+d}{c-d}\)
Vậy \(\dfrac{a+b}{a-b}\)=\(\dfrac{c+d}{c-d}\)
Nếu bạn muốn làm cách cơ bản thì hãy làm theo mình.Còn nếu bạn học toán nâng cao thì làm theo cách bạn Linh hay hơn.Chúc bạn học tốt
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
\(\Rightarrow\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
\(\Rightarrow\dfrac{a+c}{a-c}=\dfrac{b+d}{b-d}\left(đpcm\right)\)
Vậy...
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
Từ đó suy ra : \(\dfrac{a+c}{a-c}=\dfrac{b+d}{b-d}\)
Lần sau khi hỏi nhớ tìm xem có câu nào tương tự không nhé.
Ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
\(\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
Vậy nếu \(\dfrac{a}{b}=\dfrac{c}{d}\) ( a khác b, c khác d ) thì \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) thì \(a=b.k\) , \(c=d.k\)
Ta tính giá trị của các tỉ số \(\dfrac{a-b}{a};\dfrac{c-d}{c}\) theo \(k\)
\(\dfrac{a-b}{a}=\dfrac{b.k-b}{b.k}=\dfrac{b.\left(k-1\right)}{b.k}=\dfrac{k-1}{k}\left(1\right)\)
\(\dfrac{c-d}{c}=\dfrac{d.k-d}{d.k}=\dfrac{d\left(k-1\right)}{d.k}=\dfrac{k-1}{k}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) suy ra \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\b=ck\end{matrix}\right.\)
Ta có : \(\dfrac{a-b}{a}=\dfrac{bk-b}{bk}=\dfrac{b\left(k-1\right)}{k}=\dfrac{k-1}{k}\left(1\right)\)
\(\dfrac{c-d}{c}=\dfrac{dk-d}{dk}=\dfrac{d\left(k-1\right)}{dk}=\dfrac{k-1}{k}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra : \(\dfrac{a-b}{a}=k=\dfrac{c-d}{c}\)
\(\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\left(ĐPCM\right)\)
Vậy \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
Xét: \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\) (1)
Thay (1) vào \(\dfrac{a+c}{a-c}=\dfrac{b+d}{b-d}\)
\(=\dfrac{bk+dk}{bk-dk}=\dfrac{b+d}{b-d}\)
\(=\dfrac{k\left(b+d\right)}{k\left(b-d\right)}=\dfrac{b+d}{b-d}\)
\(\dfrac{b+d}{b-d}=\dfrac{b+d}{b-d}\)
Vậy \(\dfrac{a}{b}=\dfrac{c}{d}\) thì \(\dfrac{a+c}{a-c}=\dfrac{b+d}{b-d}\) (đpcm)
Áp dụng tính chất tỉ lệ thức ta có: