Cho a,b dương: a;b>0, a+b<=1
Tính GTNN:\(S=\dfrac{1}{a^3+b^3}+\dfrac{1}{a^2b}+\dfrac{1}{ab^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) a là một số nguyên dương. Tích a . b là một số nguyên dương
Suy ra b là một số nguyên dương
b) a là một số nguyên dương. Tích a . b là một số nguyên âm
Suy ra b là một số nguyên âm
d là ước dương của a và b suy ra: \(\hept{\begin{cases}a=d.a^'\\b=d.b^'\end{cases}}\)
có \(\frac{a+1}{b}+\frac{b+1}{a}\)nguyên dương suy ra \(\frac{a^2+b^2+a+b}{ab}\)nguyên dương\(\Rightarrow a^2+b^2+a+b\)chia hết cho a.b
có \(a.b=d.a^'.d.b^'=a^'.b^'d^2\Rightarrow a^2+b^2+a+b\)chia hết cho \(d^2\)
ta có: \(a^2+b^2+a+b=d^2.\left(a^'\right)^2+d^2\left(b^'\right)^2+d.a^'+d.b^'\)
\(=d\left(d\left(a^'\right)^2+d\left(b^'\right)^2+a^'+b^'\right)\)chia hết cho \(d^2\)
suy ra \(d\left(a^'\right)^2+d\left(b^'\right)^2+a^'+b^'=d\left(a^'+b^'\right)+a^'+b^'\)chia hết cho d \(\Rightarrow a^'+b^'\)chia hết cho d.\(\Rightarrow a^'+b^'\ge d\Leftrightarrow d.a^'+d.b^'\ge d^2\Leftrightarrow a+b\ge d^2\Leftrightarrow d\le\sqrt{a+b}\)
a; Đặt A= \(a^{2017}+a^{2015}+1\)
\(=a^4\left(a^{2013}-1\right)+a^2\left(a^{2013}-1\right)+a^4+a^2+1\)=\(a^4\left(\left(a^3\right)^{671}-1\right)+a^2\left(\left(a^3\right)^{671}-1\right)+\left(a^2+a+1\right)\left(a^2-a+1\right)\)
= \(\left(a^2+a+1\right)F\left(a\right)\) (trong đó F(a) là đa thức chứa a)
\(\Rightarrow A\) chia hết cho \(a^2+a+1\)
do \(a^2+a+1\) > 1 (dễ cm đc)
mà A là số nguyên tố
\(\Rightarrow A=a^2+a+1\)
hay \(a^{2017}+a^{2015}+1=a^2+a+1\)
\(\Leftrightarrow a\left(a\left(a^{2015}-1\right)+\left(a^{2014}-1\right)\right)=0\)
\(\Leftrightarrow a\left(a-1\right).G\left(a\right)=0\) ( bạn đặt nhân tử chung ra)
do a dương => a>0 => a-1=0=> a=1(t/m)
Kết Luận:...
chỗ nào bạn chưa hiểu cứ nói cho mình nha :3
phần a nhé
1/a+1/b+1/c=(a+b+c)(1/a+1/b+1/c)=3+(a/b+b/a)+(b/c+c/b)+(a/c+c/a) do a+b+c=1
áp dụng bdt cosi cho các so dương a/b,b/a,a/c,c/a,b/c,c/b
a/b+b/a >=2
b/c+c/b>=2
a/c+c/a>=2
cộng hết vào suy ra 1/a+1/b+1/c >=9
Gọi \(d=gcd\left(a;b\right)\) khi đó \(a=dm;b=dn\) với \(\left(m;n\right)=1\)
Ta có:
\(c+\frac{1}{b}=a+\frac{b}{a}\Leftrightarrow c=\frac{b}{a}+a-\frac{1}{b}=\frac{dn}{dm}+dm-\frac{1}{dn}\)
\(=\frac{n}{m}+dm-\frac{1}{dn}=\frac{dn^2+d^2m^2n-m}{dmn}\)
Khi đó \(dn^2+d^2m^2n-m⋮dmn\Rightarrow m⋮n\) mà \(\left(m;n\right)=1\Rightarrow n=1\Rightarrow m=d\)
Khi đó \(ab=dm\cdot dn=d^3\) là lập phương số nguyên dương
Bài 1:
Áp dụng BĐT Bunhiacopxky ta có:
$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$
$\Leftrightarrow 3(a^2+b^2+c^2)\geq 1$
$\Leftrightarrow a^2+b^2+c^2\geq \frac{1}{3}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Bài 2:
Áp dụng BĐT Bunhiacopxky:
$(a^2+4b^2+9c^2)(1+\frac{1}{4}+\frac{1}{9})\geq (a+b+c)^2$
$\Leftrightarrow 2015.\frac{49}{36}\geq (a+b+c)^2$
$\Leftrightarrow \frac{98735}{36}\geq (a+b+c)^2$
$\Rightarrow a+b+c\leq \frac{7\sqrt{2015}}{6}$ chứ không phải $\frac{\sqrt{14}}{6}$ :''>>