K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2019

a) 1,2x3 – x2 – 0,2x = 0

⇔ 0,2x.(6x2 – 5x – 1) = 0

Giải bài 58 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải (1): 6x2 – 5x – 1 = 0

có a = 6; b = -5; c = -1

⇒ a + b + c = 0

⇒ (1) có hai nghiệm x1 = 1 và x2 = c/a = -1/6.

Vậy phương trình ban đầu có tập nghiệm Giải bài 58 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) 5x3 – x2 – 5x + 1 = 0

⇔ x2(5x – 1) – (5x – 1) = 0

⇔ (x2 – 1)(5x – 1) = 0

⇔ (x – 1)(x + 1)(5x – 1) = 0

Giải bài 58 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có tập nghiệm Giải bài 58 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

25 tháng 7 2018

1,2x3 – x2 – 0,2x = 0

⇔ 0,2x.(6x2 – 5x – 1) = 0

Giải bài 58 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải (1): 6x2 – 5x – 1 = 0

có a = 6; b = -5; c = -1

⇒ a + b + c = 0

⇒ (1) có hai nghiệm x1 = 1 và x2 = c/a = -1/6.

Vậy phương trình ban đầu có tập nghiệm Giải bài 58 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

12 tháng 4 2022

a.\(\left(x^2+2x+5\right)\left(x^2+4x\right)=0\)

Ta có: \(x^2+2x+5=x^2+2x+1+4=\left(x+1\right)^2+4\ge4>0;\forall x\)

 \(\Rightarrow x^2+4x=0\)

\(\Leftrightarrow x\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

b.\(\left(x^2-4x+4\right)\left(x^2-3x\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\\x=3\end{matrix}\right.\)

c.\(1,2x^3-x^2-0,2x=0\)

\(\Leftrightarrow x\left(1,2x^2-x-0,2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-\dfrac{1}{6}\end{matrix}\right.\)

14 tháng 3 2021

chỗ dấu suy ra thứ 2 e ko hiểu lắm ạ 

 

16 tháng 2 2022

a/

\(\Leftrightarrow x^2-2x+4-4=0\\ \Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow x=0;x-2=0\)

\(\Leftrightarrow x=0;x=2\)

16 tháng 2 2022

b/

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-2x\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3-2x\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(3-x\right)=0\)

\(\Rightarrow x=3\)

15 tháng 9 2023

\(a.x^2-4x+4=0\)

\(\left(x-2\right)^2=0\)

=>x=2

b) \(2x^2-x=0\)

\(x\left(2x-1\right)=0\)

=> \(\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)

c) \(x^2-5x+6=0\)

\(x^2-2x-3x+6=0\)

\(\left(x-2\right)\left(x-3\right)=0\)

=> \(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

d) \(x^2+y^2=0\)

Vì \(x^2,y^2\ge0\forall x,y\)

=>x=y=0

e) \(x^2+6x+10=0\)

\(\left(x+3\right)^2+1=0\)

Vì \(\left(x+3\right)^2\ge0\forall x\)

=> VT>0 \(\forall x\)

=> phương trình vô nghiệm

10 tháng 2 2022

a, \(x^4-x^2-2=0\Leftrightarrow x^4-2x^2+x^2-2=0\)

\(\Leftrightarrow x^2\left(x^2-2\right)+\left(x^2-2\right)=0\Leftrightarrow\left(x^2+1>0\right)\left(x^2-2\right)=0\Leftrightarrow x=\pm\sqrt{2}\)

b, \(\Leftrightarrow x^2\left(x^2+2x+1\right)=0\Leftrightarrow x^2\left(x+1\right)^2=0\Leftrightarrow x=0;x=-1\)

c, \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1>0\right)=0\Leftrightarrow x=1\)

d, \(\Leftrightarrow6x^2-3x-4x+2=0\Leftrightarrow\left(3x-2\right)\left(2x-1\right)=0\Leftrightarrow x=\dfrac{2}{3};x=\dfrac{1}{2}\)

10 tháng 2 2022

a) 

/ \(x^4+x^2-2=0\)

\(\Leftrightarrow\left(x^2\right)^2-x^2+2x^2-2=0\\ \Leftrightarrow x^2\left(x^2-1\right)+2\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+2=0\\x+1=0\\x-1-0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

 

18 tháng 2 2022

a) (=) x2-2x+4=4                                           b) (=) 3x-2=0 hoặc 4x+5=0          (=) x2-2x=0                                                   (=) 3x=2  hoặc 4x=5                (=) x(x-2)=0                                                   (=) x=\(\dfrac{2}{3}\)  hoặc x=\(\dfrac{5}{4}\)                  (=) x=0 hoặc x-2=0                                                                                        (=) x=0 hoặc x=2

 

18 tháng 1 2022

\(a.x^2-11x+15=-15.\Leftrightarrow x^2-11x+30=0.\)

\(\Leftrightarrow\left(x-6\right)\left(x-5\right)=0.\Leftrightarrow\left[{}\begin{matrix}x=6.\\x=5.\end{matrix}\right.\)

\(b.2x-3x+10=x.\Leftrightarrow-2x+10=0.\Leftrightarrow x=5.\)

\(c.x^3-4=4.\Leftrightarrow x^3=8.\Leftrightarrow x^3=2^3.\Rightarrow x=2.\)

\(d.x^4+x^3-x^2-x=0.\Leftrightarrow x^2\left(x^2+x\right)-\left(x^2+x\right)=0.\Leftrightarrow\left(x^2-1\right)\left(x^2+x\right)=0.\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)x\left(x+1\right)=0.\Leftrightarrow\left(x-1\right)\left(x+1\right)^2x=0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0.\\x+1=0.\\x=0.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-1.\\x=0.\end{matrix}\right.\)