(\(\dfrac{2a}{a+3}\)-\(\dfrac{3}{3-a}\)-\(\dfrac{3a^2+3}{a^2-9}\)):\(\dfrac{a+1}{a-3}\) (a khác -1;a khác +-3)
a) Rút gọn B
b) Tính B với giá trị tuyệt đối của a =2
c) Tìm a thuộc Z để B thuộc Z
giúp em vs ạ em đag cần lời giải gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(VT=\left[\dfrac{16a-a^2-\left(3+2a\right)\left(a+2\right)-\left(2-3a\right)\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}\right]:\dfrac{a-1}{a^3+4a^2+4a}\)
\(=\dfrac{16a-a^2-3a-6-2a^2-4a-2a+4+3a^2-6a}{\left(a-2\right)\left(a+2\right)}.\dfrac{a\left(a+2\right)^2}{a-1}\)
\(=\dfrac{a-2}{\left(a-2\right)\left(a+2\right)}.\dfrac{a\left(a+2\right)^2}{a-1}=\dfrac{a\left(a+2\right)}{a-1}\left(a\ne\pm2;a\ne1\right)\)
\(=a-\dfrac{a\left(a+2\right)}{a-1}=\dfrac{a^2-a-a^2-2a}{-1}=\dfrac{-3a}{a-1}=\dfrac{3a}{1-a}=VP\left(đpcm\right)\)
`M=sqrt{(3a-1)^2}+2a-3`
`=|3a-1|+2a-3`
`=3a-1+2a-3(do \ a>=1/3)`
`=5a-4`
`N=sqrt{(4-a)^2}-a+5`
`=|4-a|-a+5`
`=a-4-a+5(do \ a>4)`
`=1`
`I=sqrt{(3-2a)^2}+2-7`
`=|3-2a|-5`
`=3-2a-5(do \ a<3/2)`
`=-2-2a`
`K=(a^2-9)/4*sqrt{4/(a-2)^2}`
`=(a^2-9)/4*|2/(a-2)|`
`=(a^2-9)/(2|a-2|)`
Nếu `3>a>2=>|a-2|=a-2`
`=>K=(a^2-9)/(2(a-2))`
Nếu `a<2=>|a-2|=2-a`
`=>K=(a^2-9)/(2(2-a))`
\(M=\left|3a-1\right|+2a-3\)
Mà \(a-\dfrac{1}{3}\ge0\)
\(\Rightarrow M=3a-1+2a-3=5a-4\)
\(N=\left|4-a\right|-a+5\)
Mà \(4-a< 0\)
\(\Rightarrow N=a-4-a+5=1\)
\(I=\left|3-2a\right|-5\)
Mà \(a-\dfrac{3}{2}< 0\)
\(\Rightarrow I=3-2a-5=-2a-2\)
K, Ta có : \(a-3< 0\)
\(\Rightarrow K=\dfrac{2\left(a^2-9\right)}{4\left|a-2\right|}=\dfrac{\left(a-3\right)\left(a+3\right)}{\left|2a-4\right|}\)
a) Ta có: \(A=\dfrac{a^2-1}{3}\cdot\sqrt{\dfrac{9}{\left(1-a\right)^2}}\)
\(=\dfrac{\left(a+1\right)\cdot\left(a-1\right)}{3}\cdot\dfrac{3}{\left|1-a\right|}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)}{1-a}\)
=-a-1
b) Ta có: \(B=\sqrt{\left(3a-5\right)^2}-2a+4\)
\(=\left|3a-5\right|-2a+4\)
\(=5-3a-2a+4\)
=9-5a
c) Ta có: \(C=4a-3-\sqrt{\left(2a-1\right)^2}\)
\(=4a-3-\left|2a-1\right|\)
\(=4a-3-2a+1\)
\(=2a-2\)
d) Ta có: \(D=\dfrac{a-2}{4}\cdot\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\)
\(=\dfrac{a-2}{4}\cdot\dfrac{4a^2}{\left|a-2\right|}\)
\(=\dfrac{a^2\left(a-2\right)}{-\left(a-2\right)}\)
\(=-a^2\)
2.
\(P=\left(\dfrac{a+6}{3\left(a+3\right)}-\dfrac{1}{a+3}\right).\dfrac{27a}{a+2}=\left(\dfrac{a+3}{3\left(a+3\right)}\right).\dfrac{27a}{a+2}=\dfrac{27a}{3\left(a+2\right)}=\dfrac{9a}{a+2}\)
ĐKXĐ là :
\(a\ne0;-3;-2\)
Vs a = 1 ta có:
=> P=3
1.
\(M=\left(\dfrac{2a}{2a+b}-\dfrac{4a^2}{\left(2a+b\right)^2}\right):\left(\dfrac{2a}{\left(2a-b\right)\left(2a+b\right)}-\dfrac{1}{2a-b}\right)=\left(\dfrac{4a^2+2ab-4a^2}{\left(2a+b\right)^2}\right).\left(\dfrac{\left(2a+b\right)\left(2a-b\right)}{b}\right)=\dfrac{2a.\left(2a-b\right)}{\left(2a+b\right)}\)
\(A=\left|a-3\right|-3a=3-a-3a=3-4a\)
\(B=4a+3-\left|2a-1\right|=4a+3-2a+1=2a+4\)
\(C=\dfrac{4}{a^2-4}\left|a-2\right|=\dfrac{-4\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}=\dfrac{-4}{a+2}\)
\(D=\dfrac{a^2-9}{12}:\sqrt{\dfrac{\left(a+3\right)^2}{16}}=\dfrac{a^2-9}{12}:\dfrac{\left|a+3\right|}{4}=\dfrac{\left(a-3\right)\left(a+3\right).4}{-12\left(a+3\right)}=\dfrac{3-a}{3}\)
\(A=\left[\dfrac{\left(a-1\right)^2}{a^2+a+1}+\dfrac{2a^2-4a-1}{a^3-1}+\dfrac{1}{a-1}\right]\cdot\dfrac{a\left(a^2+1\right)}{2a}\)
\(=\dfrac{a^3-3a^2+3a-1+2a^2-4a-1+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{a^2+1}{2}\)
\(=\dfrac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{a^2+1}{2}=\dfrac{a^2+1}{2}\)
a: \(=\dfrac{2a^2-6a+3a+9-3a^2-3}{\left(a-3\right)\left(a+3\right)}\cdot\dfrac{a-3}{a+1}\)
\(=\dfrac{-a^2-3a+6}{\left(a+3\right)}\cdot\dfrac{1}{â+1}=\dfrac{-a^2-3a+6}{\left(a+3\right)\left(a+1\right)}\)
b: |a|=2
=>a=2 hoặc a=-2
Khi a=2 thì \(A=\dfrac{-2^2-3\cdot2+6}{\left(2+3\right)\left(2+1\right)}=\dfrac{-4}{15}\)
Khi a=-2 thì \(A=\dfrac{-\left(-2\right)^2-3\cdot\left(-2\right)+6}{\left(-2+3\right)\left(-2+1\right)}=-8\)
em c.ơn nhiều ạ