Cho a,x,y dương; a khác 1. Đẳng thức nào sau đây đúng?
A. logx = log a x log a 10
B. logx = log a x log a e
C. logx = log a x ln 10
D. logx = log x a log a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, y là số nguyên âm nếu x,y là số nguyên dương
b,y là số nguyên dương nếu x,y là số nguyên âm
bạn k cho mk nha
Áp dụng bđt bunhia cho 2 bộ số \(\left(\frac{a}{x};\frac{b}{y}\right),\left(x;y\right)\)ta được
\(\left(\frac{a}{x}+\frac{b}{y}\right)\left(x+y\right)\ge\left(\sqrt{\frac{a}{x}.x}+\sqrt{\frac{b}{y}.y}\right)^2\)
\(\rightarrow x+y\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(MinS=\left(\sqrt{a}+\sqrt{b}\right)^{22}\)
+) Vì y và x tỉ lệ thuận với nhau nên:
hay
Vậy y tỉ lệ thuận với x theo hệ số tỉ lệ 2.
a) X là con Y <=> m< 1
b) X giao Y bằng rỗng <=> m> 4+m <=> không có giá trị m thỏa mãn
c) X hợp Y = (1; dương vô cùng) <=> m=1
a) Vì x,y,z>0 nên a,b,c>0 (1)
Ta có: a+b-c=x+y+y+z-z-x=2y>0
=> a+b>c. Tương tự ta có b+c>a, c+a>b (2)
Từ (1) và (2) => Tồn tại tam giác mà các cạnh của nó có độ dài 3 cạnh là a,b,c
b) Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên ta có a+b>c hay x+y+y+z>z+x => y>0
Tương tự: z,x>0
Vậy có các số dương x,y,z tm
giả sử x và y đều không chia hết cho 3
\(\hept{\begin{cases}x^4\equiv1\left(mod3\right)\\y^4\equiv1\left(mod3\right)\end{cases}\Rightarrow x^4+y^4\equiv2\left(mod3\right)\Rightarrow\frac{x^4+y^4}{15}\notin N}\)
=> x và y đều phải chi hết cho 3
tương tự sử dụng với mod 5, ( lũy thừa bậc 4 của 1 số luôn đồng dư với 0 hoạc 1 theo mod5 )
=> x và y đề phải chia hết cho 5
=> x,y đều chia hết cho 15
mà số nguyên dương nhỏ nhất chia hết cho 15 là 15 => x=y=15
thay vào và tìm min nhé
a) tìm số nguyên dương x sao cho x/9<7/x<x/6
x/9<7/x
->x^2 <63
7/x<x/6
-> x^2> 42
x/9<x/6
-> x=7 (x là số nguyên dương)
b) tìm số nguyên dương y sao cho 3/y<y/7<4/y
3/y< y/7
-> y^2 >21
y/7 <4/y
-> y^2< 28
-> y= 5 (y là số nguyên dương)