cho a b c thuộc z p là số nguyên tố lẻ ; a b c đôi một nguyên tố cùng nhau. CMR B = ( a + b + c)p + ( a - b - c ) + ( b - c - a )p + ( c - a - b )p chia hết cho abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a)
Giả sử k là ước của 2n+1 và n
Ta có
\(2n+1⋮k\)
\(n⋮k\)
Suy ra
\(2n+1⋮k\)
\(2n⋮k\)
Suy ra \(2n+1\)là số lẻ (với mọi giá trị n thuộc N)
Suy ra \(2n\)là số chẵn (với mọi giá trị n thuộc N)
Mà 2 số trên là 2 số tự nhiên liên tiếp
Suy ra \(2n+1\)và \(2n\)là 2 số nguyên tố cùng nhau
Vậy \(2n+1\)và \(n\)là 2 số nguyên tố cùng nhau (đpcm)
Câu b)
Vì n lẻ nên
(n-1) là số chẵn
(n+1) là số chẵn
(n+2) là số chẵn
(n+5) là số chẵn
Suy ra (n-1)(n+1)(n+2)(n+5) là số chẵn
Mà nếu n=1 thì (n-1)(n+1)(n+3)(n+5) chia hết tất cả các số tự nhiên (khác 0)
Mà nếu n=3 thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384
Mà nếu n=5 thì thành biểu thức trên bị biến đổi thành (n+1)(n+3)(n+5)(n+7) với n=3
Suy ra n=5 thì biểu thức trên vẫn chia hết cho 384
Vậy nếu n là lẻ thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384 (đpcm)
Câu c)
Đang thinking .........................................
LÊ NHẬT KHÔI ƠI BẠN LÀM CÓ ĐÚNG KO??? GIÚP MÌNH CÂU C VƠI NHA !!!
1) a. Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath
Goi d la UCLN(a;ab+4)
Ta co:
+ a chia het cho d(1)
+ ab+4 chia het cho d(2)
Tu (1)=>ab chia het cho d(3)
Tu (2) va (3) =>4 chia het cho d
=>d thuoc tap hop cac uoc cua 4
ma a la stnhien le =>d le
=>d=1
=>a va ab+4 nguyen to cung nhau
a)Gọi 2 số tự nhiên liên tiếp là a;a+1
=>a+1-a chia hết cho WCLN của a;a+1
=1 mà ước của 1 là 1 nên ước chung lớn nhất của a;a+1 là 1.
Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.
b)Gọi 2 số lẻ liên tiếp là a;a+2.
Làm như trên:
Hiệu:a+2-a=2
Vậy ước chung lớn nhất của a;a+2 là 1 hoặc 2.
Mà số lẻ ko chia hết cho 2 nên ước chung lớn nhất của a;a+2 là 1.
Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.
c)Gọi WCLN(2n+1;3n+1)=d.
2n+1 chia hết cho d=>6n+3 chia hết cho d.
3n+1 ------------------=>6n+2 chia hết cho d.
Hiệu chia hết cho d,hiệu =1=>...
Vậy là số nguyên tố cùng nhau.
Chúc em học tốt^^
a, gọi ƯCLN(n,2n-1) là d (d thuộc N)
Ta có: n chia hết cho d
=> 2n chia hết cho d
2n-1 chia hết cho d
=> 2n-1-2n chia hết cho d
=> 1 chia hết cho d
=> d thuộc ước của 1
=> d=1
=> n bà 2n+1 nguyên tố cùng nhau
Đặt \(p=2k+1\)( phụ chú : vì p là số nguyên tố lẻ )
\(x=a-b-c\)
\(y=b-c-a\)
\(z=c-a-b\)
\(\Rightarrow-\left(x+y+z\right)=a+b+c\)
\(\Rightarrow B=x^{2k+1}+y^{2k+1}+z^{2k+1}-\left(x+y+z\right)^{2k+1}\)
\(=\left(x^{2k+1}+y^{2k+1}\right)-\left[\left(x+y+z\right)^{2k+1}-z^{2k+1}\right]\)
\(=\left(x+y\right)\left(x^{2k}-x^{2k-1}y+....+y^{2k}\right)-\left(x+y\right)\left[\left(x+y+z\right)^{2k}+\left(x+y+z\right)^{2k-1}z+...+z^{2k}\right]\)chia hết cho \(x+y=-2c\)
\(\Rightarrow B\text{⋮}c\)
Tiếp, lại có :
\(B=x^{2k+1}+y^{2k+1}+z^{2k+1}-\left(x+y+z\right)^{2k+1}\)
\(=\left(x^{2k+1}+z^{2k+1}\right)-\left[\left(x+y+z\right)^{2k+1}-y^{2k+1}\right]\)
\(=\left(x+z\right)\left(x^{2k}-x^{2k-1}z+...+z^{2k}\right)-\left(x+z\right)\left[\left(x+y+z\right)^{2k}+\left(x+y+z\right)^{2k-1}y+...+y^{2k}\right]\)chia hết cho \(x+z=-2b\)
\(\Rightarrow B\text{⋮}b\)
CMTT, có \(B\text{⋮}a\)
Mà \(a,b,c\)đôi một nguyên tố cùng nhau ( GT )
\(\Rightarrow B\text{⋮}abc\)
Vậy ...