K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 4 2024

Lời giải:

$P=a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ac)=0-2(ab+bc+ac)=-2(ab+bc+ac)$

Do $-1\leq a,b,c\leq 2$ nên:

$(a+1)(b+1)\geq 0$

$(b+1)(c+1)\geq 0$

$(c+1)(a+1)\geq 0$

Cộng 3 BĐT trên lại và thu gọn thì:
$ab+bc+ac+2(a+b+c)+3\geq 0$

$\Leftrightarrow ab+bc+ac\geq -3$

$\Rightarrow P=-2(ab+bc+ac)\leq (-2)(-3)=6$
Vậy $P_{\max}=6$. Giá trị này đạt tại $(a,b,c)=(2,-1,-1)$ và hoán vị.

NV
7 tháng 4 2024

Do \(-1\le a;b;c\le2\Rightarrow\left\{{}\begin{matrix}\left(a+1\right)\left(a-2\right)\le0\\\left(b+1\right)\left(b-2\right)\le0\\\left(c+1\right)\left(c-2\right)\le0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a^2\le a+2\\b^2\le b+2\\c^2\le c+2\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2\le a+b+c+6\)

\(\Rightarrow a^2+b^2+c^2\le6\)

Vậy \(P_{max}=6\) khi \(\left(a;b;c\right)=\left(-1;-1;2\right)\) và các hoán vị

28 tháng 5 2022

28 tháng 5 2022

28 tháng 3 2022

Ta có : \(a^2+ab=c^2+bc\Leftrightarrow a^2-c^2+b\left(a-c\right)=0\)

\(\Leftrightarrow\left(a-c\right)\left(a+b+c\right)=0\Leftrightarrow a-c=0\) ( do a;b;c \(\ne0\Rightarrow a+b+c\ne0\) )

\(\Leftrightarrow a=c\)

Làm tương tự ; ta có : a = b . Suy ra : a = b = c 

\(A=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=6\)

Vậy ... 

28 tháng 3 2022

Ta có : a2+ab=c2+bc⇔a2−c2+b(a−c)=0a2+ab=c2+bc⇔a2−c2+b(a−c)=0

⇔(a−c)(a+b+c)=0⇔a−c=0⇔(a−c)(a+b+c)=0⇔a−c=0 ( do a;b;c ≠0⇒a+b+c≠0≠0⇒a+b+c≠0 )

⇔a=c⇔a=c

Làm tương tự ; ta có : a = b . Suy ra : a = b = c 

A=(1+ab)(1+bc)(1+ca)=(1+1)(1+1)(1+1)=6A=(1+ab)(1+bc)(1+ca)=(1+1)(1+1)(1+1)=6

Vậy ... 

NV
4 tháng 1 2021

1.

- Với \(a+b\ge4\Rightarrow A\le0\)

- Với \(a+b< 4\Rightarrow4-a-b>0\)

\(\Rightarrow A=\dfrac{a}{2}.\dfrac{a}{2}.b.\left(4-a-b\right)\)

\(\Rightarrow A\le\dfrac{1}{64}\left(\dfrac{a}{2}+\dfrac{a}{2}+b+4-a-b\right)^4=4\)

\(A_{max}=4\) khi \(\left(a;b\right)=\left(2;1\right)\)

2.

\(P=a+\dfrac{1}{2}.a.2b\left(1+2c\right)\le a+\dfrac{a}{8}\left(2b+1+2c\right)^2\)

\(P\le a+\dfrac{a}{8}\left(7-2a\right)^2=\dfrac{1}{8}\left(4a^3-28a^2+57a-36\right)+\dfrac{9}{2}\)

\(P\le\dfrac{1}{8}\left(a-4\right)\left(2a-3\right)^2+\dfrac{9}{2}\le\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};1;\dfrac{1}{2}\right)\)

 

NV
4 tháng 1 2021

Câu 3 bạn xem lại đề, mình có thể chắc chắn với bạn là đề sai

Ví dụ bạn cho \(x=98,y=100\) thì vế trái chỉ lớn hơn 8 một chút

Đề đúng phải là: \(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{16xy}{\left(x-y\right)^2}\ge12\)

 

NV
21 tháng 3 2023

Do \(\left\{{}\begin{matrix}a\ge0\\b\ge1\\a+b+c=5\end{matrix}\right.\) \(\Rightarrow c\le4\)

\(\Rightarrow2\le c\le4\Rightarrow\left(c-2\right)\left(c-4\right)\le0\Rightarrow c^2\le6c-8\)

\(0\le a\le1< 6\Rightarrow a\left(a-6\right)\le0\Rightarrow a^2\le6a\)

\(1\le b\le2< 5\Rightarrow\left(b-1\right)\left(b-5\right)\le0\Rightarrow b^2\le6b-5\)

Cộng vế:

\(a^2+b^2+c^2\le6\left(a+b+c\right)-13=17\)

\(A_{max}=17\) khi \(\left(a;b;c\right)=\left(0;1;4\right)\)

10 tháng 7 2023

 TH1: Nếu \(a\ge b\ge c\) thì đk đã cho tương đương với \(3\left(a-b\right)=5\left(b-c\right)=7\left(a-c\right)\) \(\Leftrightarrow\left\{{}\begin{matrix}3a-3b=5b-5c\\5b-5c=7a-7c\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3a+5c=8b\\7a-2c=5b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6a+10c=16b\\35a-10c=25b\end{matrix}\right.\) \(\Rightarrow41a=41b\Leftrightarrow a=b\). Điều này có nghĩa là \(a-b=0\), từ đó suy ra \(5\left(b-c\right)=0\Leftrightarrow b=c\). Vậy \(a=b=c\).

 TH2: Nếu \(b\ge c\ge a\) thì đk đã cho tương đương với \(3\left(b-a\right)=5\left(b-c\right)=7\left(c-a\right)\) \(\Leftrightarrow\left\{{}\begin{matrix}3b-3a=5b-5c\\5b-5c=7c-7a\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3a+2b=5c\\7a+5b=12c\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}15a+10b=25c\\-14a-10b=-24c\end{matrix}\right.\) \(\Rightarrow a=c\). Từ đó suy ra \(a-c=0\) hay \(3\left(b-a\right)=0\Leftrightarrow a=b\). Vậy \(a=b=c\).

 TH3: Nếu \(c\ge a\ge b\) thì đk đã cho tương đương với \(3\left(a-b\right)=5\left(c-b\right)=7\left(c-a\right)\) \(\Leftrightarrow\left\{{}\begin{matrix}3a-3b=5c-5b\\5c-5b=7c-7a\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3a+2b=5c\\7a-5b=2c\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}15a+10b=25c\\14a-10b=4c\end{matrix}\right.\) \(\Rightarrow29a=29c\Leftrightarrow a=c\). Từ đó suy ra \(a-c=0\) hay \(3\left(a-b\right)=0\Leftrightarrow a=b\). Vậy \(a=b=c\)

 Tất cả các trường hợp còn lại làm tương tự và đều suy ra được \(a=b=c\). Ta có đpcm.

10 tháng 7 2023

hi =D

16 tháng 7 2017

Từ giả thiết ta suy ra \(\hept{\begin{cases}abc-ab-bc-ac=0\\a+b+c-1=0\end{cases}}\)

\(\Rightarrow\left(abc-ab-bc-ac\right)+\left(a+b+c-1\right)=0\)

\(\Leftrightarrow\left(abc-ab\right)-\left(ac-a\right)-\left(bc-b\right)+\left(c-1\right)=0\)

\(\Leftrightarrow ab\left(c-1\right)-a\left(c-1\right)-b\left(c-1\right)+\left(c-1\right)=0\)

\(\Leftrightarrow\left(ab-a-b+1\right)\left(c-1\right)=0\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)

\(\Rightarrow\) Ít nhất một trong các số a;b;c phải bằng 1 (đpcm)

25 tháng 7 2021

Bài 2 : 

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

<=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca 

<=> a^2 + b^2 + c^2 = ab + bc + ca 

<=> 2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca 

<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 = 0 

<=> a = b = c 

NV
25 tháng 7 2021

1.

\(\Leftrightarrow2a^2+2b^2+18=2ab+6a+6b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-6a+9\right)+\left(b^2-6b+9\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-3\right)^2+\left(b-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-3=0\\b-3=0\end{matrix}\right.\) \(\Leftrightarrow a=b=3\)

2.

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

NV
25 tháng 3 2022

1.

Ta sẽ chứng minh BĐT sau: \(\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\ge\dfrac{10}{\left(a+b+c\right)^2}\)

Do vai trò a;b;c như nhau, ko mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\)

Đặt \(\left\{{}\begin{matrix}x=a+\dfrac{c}{2}\\y=b+\dfrac{c}{2}\end{matrix}\right.\) \(\Rightarrow x+y=a+b+c\)

Đồng thời \(b^2+c^2=\left(b+\dfrac{c}{2}\right)^2+\dfrac{c\left(3c-4b\right)}{4}\le\left(b+\dfrac{c}{2}\right)^2=y^2\)

Tương tự: \(a^2+c^2\le x^2\) ; \(a^2+b^2\le x^2+y^2\)

Do đó: \(A\ge\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\)

Nên ta chỉ cần chứng minh: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{10}{\left(x+y\right)^2}\)

Mà \(\dfrac{1}{\left(x+y\right)^2}\le\dfrac{1}{4xy}\) nên ta chỉ cần chứng minh:

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{5}{2xy}\)

\(\Leftrightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{2}{xy}+\dfrac{1}{x^2+y^2}-\dfrac{1}{2xy}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2}{x^2y^2}-\dfrac{\left(x-y\right)^2}{2xy\left(x^2+y^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2\left(2x^2+2y^2-xy\right)}{2x^2y^2}\ge0\) (luôn đúng)

Vậy \(A\ge\dfrac{10}{\left(a+b+c\right)^2}\ge\dfrac{10}{3^2}=\dfrac{10}{9}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};\dfrac{3}{2};0\right)\) và các hoán vị của chúng

NV
16 tháng 3 2022

Ủa số thực âm hay không âm vậy em?

16 tháng 3 2022

dạ số thực không âm thầy