Chứng minh rằng: Không tồn tại hai số a, b \(\left(a,b\in N;a\ne b\right)\)thoả mãn đẳng thức: \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow a^2b-a^2c+b^2c-b^2a+c^2a-c^2b=0\)
\(\Leftrightarrow\left(a^2b-b^2a\right)-\left(a^2c-b^2c\right)+\left(c^2a-c^2b\right)\)
\(\Leftrightarrow ab\left(a-b\right)-c\left(a^2-b^2\right)+c^2\left(a-b\right)\)
\(\Leftrightarrow ab\left(a-b\right)-c\left(a+b\right)\left(a-b\right)+c^2\left(a-b\right)\)
\(\Leftrightarrow\left(a-b\right)\left[ab-c\left(a+b\right)+c^2\right]=0\)
\(\Leftrightarrow\left(a-b\right)\left(ab-ac-bc+c^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-c\right)\left(b-c\right)=0\)
\(\Leftrightarrow.....\)
Lời giải:
$a^3+b^3=(a+b)^3-3ab(a+b)=2013$
$\Rightarrow (a+b)^3=3ab(a+b)+2013\vdots 3$
$\Rightarrow a+b\vdots 3$
$\Rightarrow (a+b)^3\vdots 27$ và $3ab(a+b)\vdots 9$
Do đó:
$2013=(a+b)^3-3ab(a+b)\vdots 9$
Điều này vô lý do $2013\not\vdots 9$
Vậy không tồn tại $a,b$ nguyên thỏa mãn đề.
Vai trò a,b không đổi ta giả sử a > b
Ta có : |ab + 1| > |a - b|
=> |ab + 1|2 > |a - b|2
<=> (ab)2 + 2ab + 1 > a2 + b2 - 2ab
<=> (ab)2 - a2 - b2 + 1 + 4ab > 0
<=> (a2 - 1)(b2 - 1) + 4ab > 0 (1)
Nếu a \(\ge\) b \(\ge\)1 hay -1 \(\ge\) a \(\ge\) b thì (1) luôn đúng
Nếu -1 \(\le\) b \(\le\) a \(\le\) 1 và ab \(\ge\) 0 thì
(a2 - 1)(b2 - 1) > 0 ; ab > 0 => (1) luôn đúng
Nếu -1 \(\le\) b \(\le\) a \(\le\) 1và ab \(\le\) 0 (2)
Khi đó nếu trong 5 số thực đó chỉ có số không âm
=> (2) không xảy ra => (1) luôn đúng
Nếu dãy trên tồn tại ít nhất một số thực a < 0 hay nhiều hơn
thì (1) luôn đúng do khi đó luôn tồn tại ít nhất cặp số ab > 0 và (2) không xảy ra
=> ĐPCM
Đề sai. Bạn cho $a=-1; b=2021; c=2$ thì để có đpcm thì pt:
$-x^2+2021x+2=P(2021)P(2022)=-4020$ có nghiệm nguyên.
Mà dễ thấy pt này không có nghiệm nguyên nên đề sai.
- Theo đề bài :
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
=) \(\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a-b}\)
=) \(\frac{b-a}{ab}=\frac{1}{a-b}\)=) \(\left(b-a\right).\left(a-b\right)=ab\)
Mà vế trái sẽ mang dấu âm còn vế phải mang dấu dương
Mà số âm khác số dương
=)\(\left(b-a\right).\left(a-b\right)\ne ab\)
=) \(\frac{1}{a}-\frac{1}{b}\ne\frac{1}{a-b}\)
=) Không tồng tại hai số a,b ( \(a,b\in N,a\ne b\)) thỏa mãn đẳng thức : \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
=) Đpcm