Cho biểu thức: \(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}+1}{\sqrt{a}};a>0\)
a) Rút gọn A.
b) Tìm giá trị của a để A=2.
c) Tìm GTNN của A.
AI GIẢI NHANH VỚI Ạ !!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+"\frac{2a+\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}"\times\frac{a-\sqrt{a}}{2\sqrt{a}-1}=\)
\(A="\frac{1a+\sqrt{a}-1}{1-a}-\frac{1a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}"\times\frac{a-\sqrt{a}}{1\sqrt{a}-1}\)
P/s: Ko chắc đâu nhé
\(1+\left(\frac{a+2\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right)\cdot\frac{a-\sqrt{a}}{2\sqrt{a}-1}\)
\(=1+\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}\left(1+\sqrt{a}+a\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\left(\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}}{\left(1-\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\left(\frac{\left(1-\sqrt{a}\right)}{\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}}{\left(1-\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\left(\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}\left(1+\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\frac{1-2\sqrt{a}+a-\sqrt{a}-a}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\frac{1-2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\frac{1-2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(1-\sqrt{a}\right)}{1-2\sqrt{a}}\)
\(=1+\frac{\sqrt{a}}{\left(1+\sqrt{a}\right)}\)
\(=\frac{1+\sqrt{a}+\sqrt{a}}{1+\sqrt{a}}\)
\(=\frac{1+2\sqrt{a}}{1+\sqrt{a}}\)
ĐKXĐ:...
\(A=\left(\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{a}{\sqrt{a}\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right):\left(\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)^2}\right)\)
\(=\frac{\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}.\frac{\sqrt{a}\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}=\frac{\sqrt{a}-1}{\sqrt{a}+1}\)
Điều kiện: x \(\ne\) 1; 1/4 ; x \(\ge\) 0
\(A=1+\left(\frac{\left(2a+\sqrt{a}-1\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\left(2a+\sqrt{a}-1\right).\sqrt{a}}{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}\right)\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\right)\)
\(A=1+\left(\frac{\left(2a+\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)-\left(2a+\sqrt{a}-1\right)\left(1+\sqrt{a}\right).\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}\right)\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\right)\)
\(A=1+\left(\frac{\left(2a+\sqrt{a}-1\right)\left(a+\sqrt{a}+1-a-\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}\right)\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\right)\)
\(A=1+\left(\frac{\left(2a+\sqrt{a}-1\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}\right)\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\right)\)
\(A=1+\left(\frac{\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}\right)\left(\frac{-\sqrt{a}\left(1-\sqrt{a}\right)}{2\sqrt{a}-1}\right)=1+\frac{-\sqrt{a}}{a+\sqrt{a}+1}=\frac{a+1}{a+\sqrt{a}+1}\)
Các bài tập dạng này hoàn toàn làm tương tự!!!