K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2021

Chu vi tam giác đều = a+b+c cả A và C đều đúng

Câu 1. Trong một tam giác vuông, kết luận nào sau đây là đúng ?A. Tổng hai góc nhọn bằng 180 0 B. Hai góc nhọn bằng nhauC. Hai góc nhọn phô nhau D. Hai góc nhọn kề nhau .Câu 2: Chọn câu trả lời đúng. Cho tam giác ABC có 00A50;B60 thì C?A. 70 0 B. 110 0 C. 90 0 D. 50 0Câu 3. Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:A. 1cm ; 2cm ; 3cm B. 2cm ; 3cm ; 4cmC. 3cm ; 4cm ; 5cm D. 4cm ; 5cm ;...
Đọc tiếp

Câu 1. Trong một tam giác vuông, kết luận nào sau đây là đúng ?
A. Tổng hai góc nhọn bằng 180 0 B. Hai góc nhọn bằng nhau
C. Hai góc nhọn phô nhau D. Hai góc nhọn kề nhau .
Câu 2: Chọn câu trả lời đúng. Cho tam giác ABC có 00

A50;B60 thì C?

A. 70 0 B. 110 0 C. 90 0 D. 50 0
Câu 3. Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:
A. 1cm ; 2cm ; 3cm B. 2cm ; 3cm ; 4cm
C. 3cm ; 4cm ; 5cm D. 4cm ; 5cm ; 6cm
Câu 4: Chọn câu sai.
A. Tam giác có hai cạnh bằng nhau là tam giác cân.
B. Tam giác có ba cạnh bằng nhau là tam giác đều.
C. Tam giác cân là tam giác đều.
D. Tam giác đều là tam giác cân.
Câu 5: Tam giác ABC vuông tại B suy ra:
A. AB 2 = BC 2 + AC 2 B. BC 2 = AB 2 + AC 2
C. AC 2 = AB 2 + BC 2 D. Cả a,b,c đều đúng
Câu 6: Hãy điền dấu X vào ô trống mà em đã chọn :
Câu Nội dung Đúng Sai
1 Tam giác vuông có một góc bằng 045 là tam giác vuông cân
2 Tam giác cân có một góc bằng 060 là tam giác đều
3 Nếu ABC là một tam giác đều thì ABC là tam giác cân
4 Nếu hai cạnh và một góc của tam giác này bằng hai cạnh và
một góc của tam giác kia thì hai tam giác đó bằng nhau
Câu 7: a). Cho ABC vuông tại A có AB = 8 cm; AC = 6 cm thì BC bằng :
A. 25 cm B. 14 cm C. 100 cm D. 10 cm
b). Cho ABC cân tại A, biết 050B thì A bằng :
A. 080 B. 050 C. 0100 D. Đáp án khác
Câu 8 . Tam giác ABC có:
A. 0ABC90 B. 0ABC180 C. 0ABC45 D. 0ABC0
Câu 9:  ABC =  DEF Trường hợp cạnh – góc – cạnh nếu
A. AB = DE; BF ; BC = EF B. AB = EF; BF ; BC = DF
C. AB = DE; BE ; BC = EF D. AB = DF; BE ; BC = EF
Câu 10. Góc ngoài của tam giác bằng :
A. Tổng hai góc trong không kề với nó. B. Tổng hai góc trong
C. Góc kề với nó D. Tổng ba góc trong của tam giác.

1
26 tháng 2 2020

Câu 1: C

Câu 2:A

Câu 3:C

Câu 4 C

Câu 5: B

Câu 6 1Đ, 2Đ, 3Đ, 4S

Câu 7: a, Đ

Câu 10 A.

Các câu khác k rõ đề

31 tháng 12 2023

Câu 2:

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=\left(2a\right)^2+\left(2a\sqrt{3}\right)^2=16a^2\)

=>BC=4a

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{1}{2}\)

nên \(\widehat{ABC}=30^0\)

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ACB}=60^0\)

Lấy điểm E sao cho \(\overrightarrow{AB}=\overrightarrow{BE}\)

=>B là trung điểm của AE

=>\(\widehat{CBE}+\widehat{CBA}=180^0\)(hai góc kề bù)

=>\(\widehat{CBE}=180^0-30^0=150^0\)

\(\overrightarrow{AB}\cdot\overrightarrow{BC}=\overrightarrow{BE}\cdot\overrightarrow{BC}\)

\(=BE\cdot BC\cdot cos\left(\overrightarrow{BE};\overrightarrow{BC}\right)\)

\(=2a\sqrt{3}\cdot4a\cdot cos150=-12a^2\)

\(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{AB}+\overrightarrow{CA}\right|=\left|\overrightarrow{CB}\right|=CB=4a\)

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

b: Ta có: ΔABD=ΔEBD

nên BA=BE

hay ΔBAE cân tại B

mà \(\widehat{ABE}=60^0\)

nên ΔBAE đều

6 tháng 4 2022

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

\(\stackrel\frown{ABD}=\stackrel\frown{EBD}\)

\(BD\left(chung\right)\)

=> ΔABD=ΔEBD(c.h-gn)

:Ta có: ΔABD=ΔEBD(cmt)

nên BA=BE

=> ΔBAE cân tại B

mà \(\widehat{ABE}=60^o\)

=> ΔBAE đều(t/c tam giác cân)

14 tháng 1 2018

a) Sai;

b) Sai;

c) Đúng;

d) Đúng.

28 tháng 6 2019

Chọn C

19 tháng 10 2023

Câu 1:

Chú ý độ dài 3 cạnh của tam giác là sai thì \(a+b=7=c\) 

Nếu là cạnh của tam giác thì: \(\left\{{}\begin{matrix}a+b>c\\a+c>b\\c+b>a\end{matrix}\right.\) 

Câu 2: Ta có: 

\(m_a=\sqrt{\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}}=\sqrt{\dfrac{AC^2+AB^2}{2}-\dfrac{BC^2}{4}}\)

\(\Rightarrow m_a=\sqrt{\dfrac{9^2+4^2}{2}-\dfrac{6^2}{4}}\)

\(\Rightarrow m_a\approx6,3\) 

Ta có: \(p=\dfrac{AB+AC+BC}{2}=\dfrac{4+6+9}{2}=\dfrac{19}{2}\)

\(\Rightarrow S_{ABC}=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\sqrt{\dfrac{19}{2}\cdot\left(\dfrac{19}{2}-6\right)\cdot\left(\dfrac{19}{2}-9\right)\cdot\left(\dfrac{19}{2}-4\right)}\approx9,5\) 

\(\Rightarrow h_b=2\cdot\dfrac{S_{ABC}}{b}\Rightarrow h_b=2\cdot\dfrac{9,5}{9}\approx2,1\) 

20 tháng 10 2023

còn lại là lấy hb cộng với ma thôi hả bạn