Cho đường tròn ( O ; R ) và điểm A nằm ngoài đường tròn ( O ). Từ A kẻ 2 tiếp tuyến AE, AH đến đường tròn ( O ) ( E, H là các tiếp điểm ). EH cắt AO tại M
a) Cho biết bán kính R= 5cm và OM= 3cm. Tính độ dài dây EH và đoạn OA
b) C/m : EM = MH
c) Kẻ đường kính KH. I là trung điểm của EK. Tia AE cắt tia OI tại B. C/m BK là tiếp tuyến của đường tròn
d) C/m : OMEI là hcn và BK . AH = R\(^2\)
a,b: Xét (O) có
AE,AH là tiếp tuyến
=>AE=AH và OA là phân giác của góc EOH
AE=AH
OE=OH
Do đó:OA là trung trực của EH
=>OA vuông góc EH tại M và M là trung điểm của EH
ΔEMO vuông tại M
=>MO^2+ME^2=OE^2
=>ME^2=5^2-3^2=16
=>ME=4(cm)
=>MH=2*4=8cm
Xét ΔOEA vuông tại E có EM là đường cao
nên OE^2=OM*OA
=>OA=5^2/3=25/3(cm)
c: ΔOEK cân tại O
mà OB là trung tuyến
nên OB vuông góc KE tại I và OB là phân giác của góc KOE
Xét ΔOKB và ΔOEB có
OK=OE
góc KOB=góc EOB
OB chung
Do đó: ΔOKB=ΔOEB
=>góc OBK=góc OEB=90 độ
=>BK là tiếp tuyến của (O)
d: Xét (O) có
ΔKEH nội tiếp
KH là đường kính
Do đó: ΔKEH vuông tại E
Xét tứ giác OIEM có
góc IEM=góc EIO=góc IOM=90 độ
=>OIEM là hình chữ nhật