Cho (O;R) điểm A nằm ngoài đường tròn, tiếp tuyến AB, AC, cát tuyến ADE
a-CM AB2= AD.AE
b-H là giao điểm BC với OA. CM DEOH nội tiếp
c-EOD=2BHD
d-Từ D kẻ đường thẳng //EB cắt BC tại P và AB tại Q. CM d là trung điểm PQ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|------|------|------|------| Tổng số tấn của 4 xe
|------|--| Số tấn của xe thứ 4
Nhìn vào biểu đồ ta thấy 3laanf TBC của 4 xe là
(12+13+15)+2=42 tấn
TBC của 4 xe là
42:3=14 tấn
Số tấn xe 4 chỏe được là
14+2=16 tấn
Đổi: \(3\)tạ \(15kg=315kg\), \(2\)yến \(8kg=28kg\).
Ô tô thứ hai chở được số hàng là:
\(315+25=340\left(kg\right)\)
Ô tô thứ ba chở được số hàng là:
\(340+28=368\left(kg\right)\)
Cả ba ô tô chở được số ki-lô-gam hàng là:
\(315+340+368=1023\left(kg\right)\)
a: Sửa đề: sin x=4/5
cosx=-3/5; tan x=-4/3; cot x=-3/4
b: 270 độ<x<360 độ
=>cosx>0
=>cosx=1/2
tan x=căn 3; cot x=1/căn 3
Đến 8 giờ 30 phút thì ô chở hàng đã đi hết thời gian là:
8 giờ 30 phút – 7 giờ = 1 giờ 30 phút = 3/2 giờ
Đến 8 giờ 30 phút ô tô chở hàng đi được quãng đường là:
40 x 1,5 = 60 km
Thời gian để 2 ô tô đuổi kịp nhau là:
60 : (65 – 40) = 60/25 giờ = 2 giờ 24 phút
Vậy đến lúc:
8 giờ 30 phút + 2 giờ 24 phút = 10 giờ 54 phút
Đáp số: 10 giờ 54 phút
đúng cái nhé bạn
lần đầu chở được số máy bơm là:
16.3=48(máy)
lần sau chở được số máy bơm là:
24.5=120(máy)
trung bình mỗi xe chở được số máy bơm là:
(48+120):8=21(máy bơm)
đáp số:21 máy bơm
a: Xét (O) có
\(\widehat{ABD}\) là góc tạo bởi tiếp tuyến BA và dây cung BD
\(\widehat{BED}\) là góc nội tiếp chắn cung BD
Do đó: \(\widehat{ABD}=\widehat{BED}\)
Xét ΔABD và ΔAEB có
\(\widehat{ABD}=\widehat{AEB}\)
\(\widehat{BAD}\) chung
Do đó: ΔABD~ΔAEB
=>\(\dfrac{AB}{AE}=\dfrac{AD}{AB}\)
=>\(AB^2=AD\cdot AE\)
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra AO là đường trung trực của BC
=>AO\(\perp\)BC tại H
Xét ΔABO vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\)
=>\(AH\cdot AO=AD\cdot AE\)
=>\(\dfrac{AH}{AE}=\dfrac{AD}{AO}\)
Xét ΔAHD và ΔAEO có
\(\dfrac{AH}{AE}=\dfrac{AD}{AO}\)
\(\widehat{HAD}\) chung
Do đó: ΔAHD~ΔAEO
=>\(\widehat{AHD}=\widehat{AEO}\)
mà \(\widehat{AHD}+\widehat{OHD}=180^0\)(hai góc kề bù)
nên \(\widehat{OHD}+\widehat{OED}=180^0\)
=>OHDE nội tiếp