Cho (O;R). Từ M ngoài (O), kẻ hai tiếp tuyến MB và MC với (O). Vẽ cát tuyến MKN không qua tâm P (MK<MN và KC<KB)
a/ chứng minh tứ giác MBOC nội tiếp và MB²= MK.MN
b/ trên (O) lấy điểm A thuộc cung lớn BC sao cho AB//KN. AC cắt KN tại I. Chứng minh I là trung điểm KN
Giúp em câu b thôi ạ
b: Vì AB//KN
nên \(sđ\stackrel\frown{AN}=sđ\stackrel\frown{BK}\)
Xét (O) có
\(\widehat{CIK}\) là góc có đỉnh ở bên trong đường tròn chắn hai cung CK và AN
=>\(\widehat{CIK}=\dfrac{1}{2}\left(sđ\stackrel\frown{CK}+sđ\stackrel\frown{AN}\right)\)
=>\(\widehat{CIK}=\dfrac{1}{2}\left(sđ\stackrel\frown{CK}+sđ\stackrel\frown{BK}\right)=\dfrac{1}{2}\cdot sđ\stackrel\frown{BC}\)
Xét (O) có
\(\widehat{MBC}\) là góc tạo bởi tiếp tuyến BM và dây cung BC
Do đó: \(\widehat{MBC}=\dfrac{1}{2}sđ\stackrel\frown{BC}\)
=>\(\widehat{MBC}=\widehat{MIC}\)
=>MBIC là tứ giác nội tiếp
=>M,B,I,C cùng thuộc một đường tròn
mà M,B,O,C cùng thuộc đường tròn đường kính OM
nên I nằm trên đường tròn đường kính OM
=>OI\(\perp\)MN tại I
ΔONK cân tại O
mà OI là đường cao
nên I là trung điểm của NK
con chó có bao nhiêu tuôi