Từ A nằm ngoài đường tròn (O;R) vẽ 2 tiếp tuyến AB, AC(B, C tiếp điểm), gọi H là giao điểm của OA và BC.
a) cm tứ giác ABOC nội tiếp
b) gọi d là trung điểm AC, BD cắt (O) tại E, AE cắt(O) tại F. Cm AB2= AE. AF
C) tứ giác dehc nội tiếp
D) bc=cf
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc với BC
=>OH*OA=OB^2=R^2
b: góc ABM=góc ACM
góc HBM=90 độ-góc OMB=90 độ-góc OBM=góc ABM
=>BM là phân giác của góc ABH
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
c: Xét (O) có
ΔBED nội tiếp
BD là đường kính
Do đó: ΔBED vuông tại E
Xét ΔBAD vuông tại B có BE là đường cao
nên \(AE\cdot AD=AB^2\left(1\right)\)
Xét ΔOBA vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AD=AH\cdot AO\)
hay \(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
Xét ΔAEH và ΔAOD có
\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
\(\widehat{HAE}\) chung
Do đó: ΔAEH\(\sim\)ΔAOD
Suy ra: \(\widehat{AHE}=\widehat{ADO}=\widehat{BDE}\)
Do \(OB=OE=R\Rightarrow\Delta OBE\) cân tại O
Mà \(OH\perp BE\) (giả thiết) \(\Rightarrow OH\) là đường cao đồng thời là trung trực của BE
Hay OA là trung trực của BE
\(\Rightarrow AB=AE\)
Xét hai tam giác OAB và OAE có: \(\left\{{}\begin{matrix}OB=OE=R\\AB=AE\left(cmt\right)\\OA\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAB=\Delta OAE\left(c.c.c\right)\)
\(\Rightarrow\widehat{AEO}=\widehat{ABO}=90^0\Rightarrow AE\) là tiếp tuyến của (O)
a) Xét tứ giác OBAC có
\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối
\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OBAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Vì AM và AN là 2 tiếp tuyến của đường tròn tâm O
=> \(\left\{{}\begin{matrix}AM\perp OM\\AN\perp ON\end{matrix}\right.\) => \(\left\{{}\begin{matrix}GócAMO=90\\GócANO=90\end{matrix}\right.\)
Xét từ giác AMON có :
AMO + ANO = 90 + 90 = 180
Mà 2 góc này ở vị try đối diện nhau
=> Tứ giác AMON nội tiếp < đpcm>
a, Vì AM; AN lần lượt là tiếp tuyến đường tròn (O) với M;N là tiếp điểm
=> ^AMO = ^ANO = 900
mà AM = AN (tc tiếp tuyến cắt nhau) ; OM = ON = R
Vậy OA là đường trung trực đoạn MN => OA vuông MN
Xét tứ giác AMON có
^AMO + ^ANO = 1800
mà 2 góc này đối Vậy tứ giác AMON là tứ giác nt 1 đường tròn
b, Xét tam giác AMB và tam giác ACM có
^A _ chung ; ^AMB = ^ACB ( cùng chắn cung BM )
Vậy tam giác AMB ~ tam giác ACM (g.g)
\(\dfrac{AM}{AC}=\dfrac{AB}{AM}\Rightarrow AM^2=AB.AC\)
c, Xét tam giác OMA vuông tại M, đường cao MH
Ta có \(AM^2=AH.AO\)( hệ thức lượng )
=> \(AB.AC=AH.AO\Rightarrow\dfrac{AB}{AO}=\dfrac{AH}{AC}\)
Xét tam giác ABH và tam giác AOC có
^A _ chung
\(\dfrac{AB}{AO}=\dfrac{AH}{AC}\left(cmt\right)\)
Vậy tam giác ABH ~ tam giác AOC (c.g.c)
=> ^ABH = ^AOC ( góc ngoài đỉnh B )
Vậy tứ giác BHOC là tứ giác nt 1 đường tròn
d, Ta có BHOC nt 1 đường tròn (cmc)
=> ^OHC = ^OBC (góc nt chắc cung CO)
=> ^AHB = ^ACO (góc ngoài đỉnh H)
mà ^OCB = ^OBC do OB = OC = R nên tam giác OBC cân tại O
=> ^OHC = ^AHB
mà ^CHN = 900 - ^OHC
^NHB = 900 - ^AHB
=> ^CHN = ^NHB
=> HN là phân giác của ^BHC