K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2

 Gọi M là trung điểm của AC và T là điểm đồng quy của 2 tiếp tuyến tại B, D và đường thẳng AC.

 Nhận thấy \(\widehat{OBT}=\widehat{ODT}=\widehat{OMT}=90^o\) nên 5 điểm O, M, B, T, D cùng thuộc đường tròn (OT).

 Ta có \(\widehat{DCM}=\widehat{DCA}=\widehat{DBA}\)

 Và \(\widehat{DMC}=180^o-\widehat{TMD}\) \(=180^o-\widehat{DBT}\) \(=180^o-\widehat{BCD}\) \(=\widehat{DAB}\)

Nên \(\Delta DAB\sim\Delta DMC\left(g.g\right)\)

 \(\Rightarrow\dfrac{AB}{MC}=\dfrac{BD}{CD}\) 

 \(\Rightarrow AB.CD=MC.BD=\dfrac{1}{2}AC.BD\)

 Tương tự, ta chứng minh được \(AD.BC=\dfrac{1}{2}AC.BD\) (hoặc cùng có thể dùng định lý Ptolemy trong tứ giác ngoại tiếp để suy ra điều này).

 \(\Rightarrow AB.CD=AD.BC\left(=\dfrac{1}{2}AC.BD\right)\) 

 Ta có đpcm.

22 tháng 2

 Mình trả lời rồi nhé bạn. Nếu bạn chưa xem được đáp án thì bạn vào trang cá nhân của mình xem nhé.

5 tháng 5 2020

đề sai. muốn c/m đề sai thì nói. mình c/m cho 

a) Chúng ta sẽ dùng cách chứng minh phản chứng

Để ABCD là tứ giác nội tiếp thì OA=OB=OC=OD(O là tâm của đường tròn ngoại tiếp tứ giác nội tiếp ABCD vì O là giao điểm của hai đường chéo)

hay \(OA\cdot OC=OB\cdot OD\)(đpcm)

 

28 tháng 2 2021

Nếu $OA\neq OB \neq OC \neq OD$ thì sao ạ? Với hình như "O là giao điểm của hai đường chéo thì là tâm đường tròn" chỉ đúng khi ABCD là hình thang cân.

bài này em ko bt em mới học lp 6 thôi

29 tháng 4 2016

Xét các tam giác đồng dạng là dc

a) Xét (O) có 

ΔACD nội tiếp đường tròn(A,C,D\(\in\)(O))

AD là đường kính(gt)

Do đó: ΔACD vuông tại C(Định lí)

Suy ra: AC\(\perp\)CD tại C

hay \(EC\perp CD\) tại C

Xét tứ giác ECDF có 

\(\widehat{EFD}\) và \(\widehat{ECD}\) là hai góc đối

\(\widehat{EFD}+\widehat{ECD}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ECDF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Ta có: `hat(ABD) = hat(ACD)`.

Lấy `M in AC` sao cho `hat(ADB) = hat(MDC)`.

`=> triangle ABD ~ triangle MCD`.

`=> (AB)/(MC) = (BD)/(CD) => AB . CD = BD . MC`.

Xét `2 triangle ADM, BDC`, ta có:

`hat(ADM) = hat(BDC)`.

`(DA)/(DM) = (BD)/(DC) ( triangle ABD ~ triangle MCD )`.

`=> triangle ADM ~ triangle BCD => (AD)/(AM) = (BD)/(CB) => AD . BC = BD . AM`

`=> AD . BC + AD . BC = BD . AM + BD . MC`

`=> AD . BC + AD . BC = BD(AM+MC)`

`=> AD.BC+AD.BC = BD . AC => dpcm`.

 

9 tháng 5 2022

cảm ơn nhiều ạ

4 tháng 3 2017

Ta có:  A E D ^ = 1 2 s đ A D ⏜ + s đ M B ⏜

=  1 2 s đ D M ⏜ = M C D ^ => D E P ^ + P C D ^ = 180 0

=> PEDC nội tiếp

16 tháng 1 2018

Chọn đáp án D

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

(góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối với đỉnh đó )

 

Phương án A, B, C đúng

1 tháng 3 2016

gợi ý:

lúc đầu nó là 1 bdt vì nó nội tiếp nên dấu = xảy ra!

1 tháng 3 2016

bđt ptoleme nhé bạn. 
Trên cung nhỏ BC, ta có các góc nội tiếp ∠BAC = ∠BDC, và trên cung AB, ∠ADB = ∠ACB

  1. Lấy 1 điểm K trên AC sao cho ∠ABK = ∠CBD;
    1. Từ ∠ABK + ∠CBK = ∠ABC = ∠CBD + ∠ABD, suy ra ∠CBK = ∠ABD.
  2. Do vậy tam giác △ABK đồng dạng với tam giác △DBC, và tương tự có △ABD ∼ △KBC.
  3. Suy ra: AK/AB = CD/BD, và CK/BC = DA/BD;
    1. Từ đó AK·BD = AB·CD, và CK·BD = BC·DA;
    2. Cộng các vế của 2 đẳng thức trên: AK·BD + CK·BD = AB·CD + BC·DA;
    3. Hay: (AK+CK)·BD = AB·CD + BC·DA;
    4. Mà AK+CK = AC, nên AC·BD = AB·CD + BC·DA; (điều phải chứng minh)