K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2021

- Xét tg ABC và AFE có :

AB=AF(gt)

AC=AE(gt)

\(\widehat{FAE}=\widehat{BAC}\left(đđ\right)\)

=> Tg ABC=AFE(c.g.c)

=> EF=BC

Mà : \(BM=\frac{BC}{2}\left(gt\right)\)

\(FN=\frac{FE}{2}\left(gt\right)\)

=> BM=FN

- Xét tg ABM và AFN có :

AB=AF(gt)

BM=FN(cmt)

\(\widehat{B}=\widehat{F}\)(do tg ABC=AFN)

=> Tg ABM=AFN(c.g.c)

#H

a: Xét tứ giác AEBC có 

M là trung điểm của AB

M là trung điểm của EC

Do đó: AEBC là hình bình hành

Suy ra: AE=BC

b: Xét tứ giác ABCF có 

N là trung điểm của AC

N là trung điểm của BF

Do đó: ABCF là hình bình hành

Suy ra: AF=BC

mà AE=BC

nên AE=FA

a: Xét tứ giác AEBC có 

M là trung điểm của AB

M là trung điểm của EC

Do đó: AEBC là hình bình hành

Suy ra: AE=BC

b: Xét tứ giác ABCF có 

N là trung điểm của AC

N là trung điểm của BF

Do đó: ABCF là hình bình hành

Suy ra: AF=BC

mà AE=BC

nên AE=FA

12 tháng 11 2021

a: Xét tứ giác ACEB có 

M là trung điểm của BC

M là trung điểm của AE

Do đó: ACEB là hình bình hành

Suy ra: AC//BE

11 tháng 12 2021

a: Xét tứ giác BCEF có

A là trung điểm của BE

A là trung điểm của CF

Do đó: BCEF là hình bình hành

Suy ra: EF=BC

18 tháng 7 2019

A B C E D M M

a) Vì AM là phân giác của góc BAC

nên góc BAM = CAM

Xét ΔBAM và ΔCAM có:

AB = AC ( giả thiết )

Góc BAM = CAM ( chứng minh trên )

AM cạnh chung.

=> Δ BAM = ΔCAM ( c.g.c )

=> BM = CM ( 2 cạnh tương ứng )

mà M nằm giữa B và C

Do đó M là trung điểm của BC → ĐPCM.

b) Ta có: AB + BE = AE

AC + CF = AF

mà AB = AC ( đề bài ); AE = AF (đề bài)

=> BE = CF.

Do ΔBAM = ΔCAM nên góc ABC = ACB ( 2 góc tương ứng )

Lại có: Góc ABC + CBE = 180 độ (kề bù)

Góc ACB + BCF = 180 độ (kề bù)

=> ABC + CBE = ACB + BCF

=> Góc CBE = BCF.

Xét ΔBCE và ΔCBF có:

BE = CF ( chứng minh trên)

Góc CBE = BCF ( chứng minh trên)

BC cạnh chung ( theo hình vẽ)

=> ΔBCE = ΔCBF ( c.g.c ) → ĐPCM.

c) Lại do ΔBCE = ΔCBF nên góc EBC = FCB ( 2 góc tương ứng ) hay góc EBM = FCM

Xét ΔMBE và ΔMCF có:

MB = MC ( chứng minh ở câu a )

Góc EBM = FCM ( chứng minh trên)

BE = FC ( chứng minh ở câu b)

=> ΔMBE = ΔMCF ( c.g.c )

=> ME = MF ( 2 cạnh tương ứng ) → ĐPCM.

d) Xét ΔEMN và ΔFMN có:

EM = FM ( chứng minh ở câu c )

EN = FN ( N là trung điểm EF )

MN chung.

=> ΔEMN = ΔFMN.

=> Góc ENM = FNM (2 góc tương ứng)

Suy ra MN là tia phân giác của góc ENF (1)

Có: góc BAM = CAM

Suy ra AM là tia phân giác của góc BAC (2)

Từ (1) và (2) suy ra A, M, N nằm trên cùng 1 đường thẳng.

Do đó A, M, N thẳng hàng → ĐPCM.

18 tháng 7 2019

A B C M E F N

CM:a) Xét t/giác ABM và ACM

có: AB = AC (gt)

  \(\widehat{BAM}=\widehat{CAM}\) (gt) 

   AM : chung

=> t/giác ABM = t/giác ACM (c.g.c)

=> BM = CM (2 cạnh t/ứng)

=> M là trung điểm của BC

b) Ta có: AE + AC = EC 

         AF + AB = FB

mà AE = AF (gt); AB = AC (gt)

=> EC = FB

Xét t/giác BCE và t/giác CBF

có: BC : chung

  \(\widehat{BCE}=\widehat{FBC}\) (vì t/giác ABC cân)

 EC = FB (cmt)

=> t/giác BCE = t/giác CBF (c.g.c)

c) Xét t/giác BEM và t/giác CFM

có: EB = FC (vì t/giác BCE = t/giác CBF)

 \(\widehat{EBM}=\widehat{FCM}\) (vì t/giác BCE = t/giác CBF)

 BM = CM (cm câu a)

=> t/giác BEM = t/giác CFM (c.g.c)

=> ME = MF (2 cạnh t/ứng)

d) Xét t/giác AEN và t/giác AFN

có: AE = AF (gt)

  EN = FN (gt)

  AN : chung

=> t/giác AEN = t/giác AFN (c.c.c)

=> \(\widehat{EAN}=\widehat{MAF}\) (2 góc t/ứng)

=> AN là tia p/giác của góc EAF => \(\widehat{EAN}=\widehat{MAF}=\frac{\widehat{EAF}}{2}\)

AM là tia p/giác của góc BAC => \(\widehat{BAM}=\widehat{CAM}=\frac{\widehat{BAC}}{2}\)

Mà \(\widehat{EAF}=\widehat{BAC}\) (đối đỉnh)

=> \(\widehat{EAN}=\widehat{NAF}=\widehat{BAM}=\widehat{MAC}\)

Ta có: \(\widehat{FAN}+\widehat{NAE}+\widehat{EAB}=180^0\) 

hay \(\widehat{BAM}+\widehat{EAB}+\widehat{EAN}=180^0\)

=> A, M, N thẳng hàng

AH
Akai Haruma
Giáo viên
13 tháng 7

Lời giải:
a. Xét tam giác $AMC$ và $EMB$ có:

$AM=ME$

$MB=MC$ (do $M$ là trung điểm $BC$)

$\widehat{AMC}=\widehat{EMB}$ (đối đỉnh)

$\Rightarrow \triangle AMC=\triangle EMB$ (c.g.c)

$\Rightarrow AC=EB$

b. Xét tam giác $AFD$ và $BED$ có:

$FD=ED$ 

$AD=BD$ (do $D$ là trung điểm $AB$)

$\widehat{ADF}=\widehat{BDE}$ (đối đỉnh) 

$\Rightarrow \triangle AFD=\triangle BED$ (c.g.c)

$\Rightarrow AF=BE$ 

Mà theo phần a thì $AC=BE$ nên $AF=AC$

 

AH
Akai Haruma
Giáo viên
13 tháng 7

Hình vẽ:

27 tháng 11 2016

A B C E D M

a) Vì AM là phân giác của góc BAC

nên góc BAM = CAM

Xét ΔBAM và ΔCAM có:

AB = AC ( giả thiết )

Góc BAM = CAM ( chứng minh trên )

AM cạnh chung.

=> Δ BAM = ΔCAM ( c.g.c )

=> BM = CM ( 2 cạnh tương ứng )

mà M nằm giữa B và C

Do đó M là trung điểm của BC → ĐPCM.

b) Ta có: AB + BE = AE

AC + CF = AF

mà AB = AC ( đề bài ); AE = AF (đề bài)

=> BE = CF.

Do ΔBAM = ΔCAM nên góc ABC = ACB ( 2 góc tương ứng )

Lại có: Góc ABC + CBE = 180 độ (kề bù)

Góc ACB + BCF = 180 độ (kề bù)

=> ABC + CBE = ACB + BCF

=> Góc CBE = BCF.

Xét ΔBCE và ΔCBF có:

BE = CF ( chứng minh trên)

Góc CBE = BCF ( chứng minh trên)

BC cạnh chung ( theo hình vẽ)

=> ΔBCE = ΔCBF ( c.g.c ) → ĐPCM.

c) Lại do ΔBCE = ΔCBF nên góc EBC = FCB ( 2 góc tương ứng ) hay góc EBM = FCM

Xét ΔMBE và ΔMCF có:

MB = MC ( chứng minh ở câu a )

Góc EBM = FCM ( chứng minh trên)

BE = FC ( chứng minh ở câu b)

=> ΔMBE = ΔMCF ( c.g.c )

=> ME = MF ( 2 cạnh tương ứng ) → ĐPCM.

d) Xét ΔEMN và ΔFMN có:

EM = FM ( chứng minh ở câu c )

EN = FN ( N là trung điểm EF )

MN chung.

=> ΔEMN = ΔFMN.

=> Góc ENM = FNM (2 góc tương ứng)

Suy ra MN là tia phân giác của góc ENF (1)

Có: góc BAM = CAM

Suy ra AM là tia phân giác của góc BAC (2)

Từ (1) và (2) suy ra A, M, N nằm trên cùng 1 đường thẳng.

Do đó A, M, N thẳng hàng → ĐPCM.

Chúc bạn học giỏi nguyễn minh trang!vui

27 tháng 11 2016

các cậu vẽ hình và trả lời đầy đủ giúp mình. Thnks

18 tháng 1 2022

a) Xét △ ABC và △ AED ta có:

     AB = AE ( gt )

     \(\widehat{A_1}=\widehat{A_2}\) ( đối đỉnh )

     AC = AD ( gt )

⇒ △ ABC = △ AED  ( c - g - c )

b ) Vi △ ABC = △ AED  ( cmt )

⇒   \(\widehat{D}=\widehat{C}\)

Mà 2 góc ở vị trí so le trong nên 

⇒ DE // BC

c) Vì △ ABC = △ AED ( cmt )

⇒ BC = ED = \(\dfrac{1}{2}\)BC = \(\dfrac{1}{2}\) ED

⇒ DN = MC

Xét △ DNA và △ CMA có:

     AD = AC ( gt )

     \(\widehat{D}=\widehat{C}\)

     DN = MC ( cm )

⇒ △ DNA = △ CMA ( c - g - c )

⇒ \(\widehat{DAN}=\widehat{CAM}\)

Do đó: N, A, M thẳng hàng

  

18 tháng 1 2022

em camon nhìu ạ