Tính tổng ;
M = \(\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+.....+\frac{1}{946}+\frac{1}{990}\)
HELP ME
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính tổng ;
M = \(\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+.....+\frac{1}{946}+\frac{1}{990}\)
HELP ME
a, 12 + 14+ 16 + ....+ 90
dãy trên có số hạng là:
(90 - 12 ): 2 + 1 =40( sô )
tổng của dãy trên là:
(90 + 12 ) x 40 : 2= 2040
b, 100 số tự nhiên đầu tiên
0, 1, 2 , 3, 4, 5, ..., 99
tổng dãy trên là:
(99 + 0) x 100 : 2 =4950
a, Số các số hạng là : \(\frac{90-12}{2}+1=40\)
Tổng của chúng là:
\(12+14+16+18+...+88+90=\frac{\left(12+90\right).40}{2}=2040\)
b, Số tự nhiên cuối cúng là: \(\frac{100-1}{1}+0=99\)
Tổng của 100 số tự nhiên đầu tiên là:
\(0+1+2+3+...+99=\frac{\left(0+99\right).100}{2}=4950\)
số số hạng là: (100-1):1+1=100 (số)
tổng: (100+1) x 100 : 2=5050
a=100+98+96+...+2-97-95-...-1
=100+(98-97)+(96-95)+...+(2-1)
=100+1+1+...+1
=100+1.50
=100+50=150
The girl
Có 50 cặp như thế , do đó kết quả là : 101 . 50 = 5050
Một cách khác tính tổng trên
S = 1 + 2 + 3 + ......... + 99 + 100
S = 100 + 99 + .......... + 3 + 2 + 1
2S = 101 + 101 + ..... + 101 + 101 ( có 100 số hạng )
Do đó S = 101 . 100 : 2 = 5050
Như vậy để tính tổng các số tự nhiên liên tiếp , chỉ cần lấy số đầu cộng với số cuối , nhân với số số hạng rồi chia cho 2
Quy tắc trên cũng đúng đối với các dãy số cách đều , chẳng hạn : tổng các số chẵn liên tiếp tổng các số lẻ liên tiếp .......
Số số hạng của dãy số này là :
( 100 - 1 ) : 1 + 1 = 100 ( số )
Tổng của dãy số này là :
( 100 + 1 ) x 100 : 2 = 5050
Đáp số : 5050
Học tốt !
ta có (m-1):3+1=91 (công thức tính số số hạng một tổng nhé)
=>m=271
vậy tổng m=(271+1)*91:2=12649
uses crt;
var s,i:integer;
begin
clrscr;
s:=0;
i:=0;
repeat
i:=i+2;
s:=s+i;
until s>1000;
writeln(s);
readln;
end.
\(M=\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{946}+\frac{1}{990}\)
\(\Rightarrow\frac{1}{2}M=\frac{1}{2}\left(\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{946}+\frac{1}{990}\right)\)
\(\Rightarrow\frac{1}{2}M=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{1892}+\frac{1}{1980}\)
\(\Rightarrow\frac{1}{2}M=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{43.44}+\frac{1}{44.45}\)
\(\Rightarrow\frac{1}{2}M=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{43}-\frac{1}{44}+\frac{1}{44}-\frac{1}{45}\)
\(\Rightarrow\frac{1}{2}M=\frac{1}{5}-\frac{1}{45}=\frac{9}{45}-\frac{1}{45}=\frac{8}{45}\)
\(\Rightarrow M=\frac{8}{45}:\frac{1}{2}=\frac{8}{45}.2=\frac{16}{45}\)
nhớ ấn đúng cho mình nha
\(M=\frac{2}{30}+\frac{2}{42}+...+\frac{2}{1980}\)
\(=2\left(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{44.45}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{44}-\frac{1}{45}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{45}\right)\)
\(=2\times\frac{8}{45}\)
\(=\frac{16}{45}\)