Cho biểu thức M(x) = \(x^2\) - x - 2
a) Tính M(1); M(\(\dfrac{-1}{2}\)); M(\(\sqrt{1,44 }\))
b)Tìm x để M(x) = -2
c)Tìm x \(\in\) Z để M(x) có giá trị là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)+x^2\)
\(=x^2-bx-ax+ab+x^2-cx-bx+bc+x^2-ax-cx+ac+x^2\)
\(=4x^2-\left(bx+ax+cx+bx+ax+cx\right)+\left(ab+bc+ac\right)\)
\(=4x^2-2x\left(a+b+c\right)+\left(ab+bc+ac\right)\)
Thay \(x=\dfrac{1}{2}a+\dfrac{1}{2}b+\dfrac{1}{2}c\) vào M ta được:
\(M=4.\dfrac{1}{4}\left(a+b+c\right)^2-2.\dfrac{1}{2}\left(a+b+c\right)^2+ab+bc+ac=\left(a+b+c\right)^2-\left(a+b+c\right)^2+ab+bc+ac=ab+bc+ac\)
a:
ĐKXĐ: x>=0; x<>1
Sửa đề: \(M=x-\dfrac{2x-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1\)
\(=x-\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1\)
\(=x-2\sqrt{x}+1+\sqrt{x}+1=x-\sqrt{x}+2\)
b: \(M=x-\sqrt{x}+2\)
\(=x-\sqrt{x}+\dfrac{1}{4}+\dfrac{7}{4}\)
\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\) thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi \(\sqrt{x}-\dfrac{1}{2}=0\)
=>\(\sqrt{x}=\dfrac{1}{2}\)
=>x=1/4
a) Ta có M = (x + 3)2 - (x - 1)(x + 4) + 5
= x2 + 6x + 9 -(x2 + 3x - 4) + 5
= x2 + 6x + 9 - x2 - 3x + 4 + 5
= 3x + 18 (1)
b) Thay x = 2 vào (1)
=> M = 3.2 + 18 = 24
c) Ta có M = 15x2
=> 15x2 = 3x + 18
=> 15x2 - 3x - 18 = 0
=> 15x2 + 15x - 18x - 18 = 0
=> 15x(x + 1) - 18(x + 1) = 0
=> (15x - 18)(x + 1) = 0
=> 3(5x - 6)(x + 1) = 0
=> (5x - 6)(x + 1) = 0
=> \(\orbr{\begin{cases}5x-6=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1,2\\x=-1\end{cases}}\)
Vậy \(x\in\left\{1,2;-1\right\}\)là giá trị cần tìm
a, \(M=\left(x+3\right)^2-\left(x-1\right)\cdot\left(x+4\right)+5\)\(=x^2+6x+9-\left(x^2-x+4x-4\right)+5\)\(=3x+18\)
b, Thay x=2 vào M có \(M=3\cdot2+18=24\)
c, \(M=15x^2\Leftrightarrow15x^2=3x+18\Leftrightarrow15x^2-3x-18=0\Leftrightarrow3\cdot\left(x+1\right)\cdot\left(5x-6\right)=0\) \(\Leftrightarrow\hept{\begin{cases}x=-1\\x=\frac{6}{5}\end{cases}}\)
Vậy ....
a, \(M=2x^3+xy^2-3xy+1\)
b, Thay x = -1 ; y = 2 ta được
M = -2 - 2 + 6 + 1 = 3
a, Do \(x=-3\)\(=>A=\frac{x+3}{x+2}=\frac{-3+3}{-3+2}=\frac{0}{-1}=0\)
Vậy A = 0 khi x = -3
b, Ta có : \(B=\frac{x}{x+1}+\frac{2}{x-1}-\frac{4}{x^2-1}=\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{4}{x^2-1}\)
\(=\frac{x^2-x+2x-2}{x^2-1}=\frac{x\left(x-1\right)+2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{\left(x+2\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\frac{x+2}{x+1}\)(đpcm)
iophkhghoghkghjggjhghgjhjnnrjhnjvfdjgjhrthgfjhnvfgughfuihgjfdhntfjhb fdghxdfjthfgdrtfghertgfhgrthgrthgrtrgurgfhgfhgerhgdsuhtyhdfuyhrhgthfutrugerhtgtertmgiurjhtjyiujbgf89yhjrintjihjdhr hbfbv nùgvuibherufdhtguihruvhaweufhvnfgffyhrghsr78ryughg9u8ghtityjyhyijtyjuy8hituhzihuyuyru9jr0ujtyututr09yuitutr9uirt9ui56i789i69utihirrgiu6ygjityojhojkyjyykikgjkthogfjkjhfggfjkhjkhkjkjkjkjgfohfkojhiyy0jhiuihmokhmhjkhkjykkhjkhjykjkgjkyjyotuhjnhknkhijiyjiyitihfgujdhufturgjjhi htfhrhfgrhuygrutrtuyhrthuyhrhtuhutryjuy.ôl
1) Sửa đề: x=0,09
Thay x=0,09 vào A, ta được:
\(A=\dfrac{\sqrt{0.09}}{\sqrt{0.09}-1}=\dfrac{0.3}{0.3-1}=\dfrac{0.3}{-0.7}=\dfrac{-3}{7}\)
a) \(M=\frac{x}{x+1}+\frac{1}{x-1}-\frac{2x}{1-x^2}\left(x\ne\pm1\right)\)
\(\Leftrightarrow M=\frac{x}{x+1}+\frac{1}{x-1}+\frac{2x}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow M=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2x}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow M=\frac{x^2-x+x+1+2x}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow M=\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}=\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{x+1}{x-1}\)
Vậy \(M=\frac{x+1}{x-1}\left(x\ne\pm1\right)\)
b) \(M=\frac{x+1}{x-1}\left(x\ne\pm1\right)\)
x-2=1
<=> x=3 (tmđk)
Thay x=3 vào M ta có: \(M=\frac{3+1}{3-1}=\frac{4}{2}=2\)
Vậy M=2 khi x-2=1
c) \(M=\frac{x+1}{x-1}\left(x\ne\pm1\right)\)
M nguyên khi x+1 chia hết cho x-1
=> x-1+2 chia hết cho x-1
x nguyên => x-1 nguyên => x-1 thuộc Ư (2)={-2;-1;1;2}
Ta có bảng
x-1 | -2 | -1 | 1 | 2 |
x | -1 | 0 | 2 | 3 |
ĐCĐK | ktm | tm | tm | tm |
Vậy x={0;2;3}
a: \(M\left(x\right)=\left(x-2\right)\left(x+1\right)\)
\(M\left(1\right)=\left(1-2\right)\cdot\left(1+1\right)=-2\)
\(M\left(-\dfrac{1}{2}\right)=\dfrac{-5}{2}\cdot\dfrac{1}{2}=-\dfrac{5}{4}\)
\(M\left(1.2\right)=\left(1.2-2\right)\cdot\left(1.2+1\right)=2.2\cdot\left(-0.8\right)=-1.76\)
b: Để M(x)=-2 thì \(x^2-x=0\)
=>x=0 hoặc x=1