Cho ΔABC, M la trung diem cua BC. Tren tia doi cua MA, lay E sao cho MA=ME. Goi I la 1 diem tren AC; K la mot diem tren EB sao cho AI=EK. Voi dieu kien nao cua I thi AB//IK, vi sao?
Giup mik vs, mik dag can gap!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.xet tam giac AMC va tam giac BME
Có : BM=MC (giả thiết)
Góc BME =Góc AMC
AM=ME
=> tam giác AMC=tam giac EMB (c.g.c)
=> BE=AC (2 cạnh tương ứng)
b. Do tam giác AMC =tam giác EMB
=>góc MBE= góc ACM (2 góc tương ứng)
Mà góc MBE so le trong với góc ACM
=>BE //AC
a) Ta có: \(\Delta ABC\)vuông ở B
\(\Rightarrow\widehat{BAC}+\widehat{ACB}=90^o\)(trong tam giác vuông, 2 góc nhọn phụ nhau)
\(\Rightarrow\widehat{BAC}=\widehat{ACB}=45^o\)
Xét \(\Delta BME\)và \(\Delta CMA\)có:
BM = CM (gt)
\(\widehat{BME}=\widehat{CMA}\)(2 góc đối đỉnh)
ME = MA (gt)
\(\Rightarrow\Delta BME=\Delta CMA\left(c.g.c\right)\)
\(\Rightarrow\widehat{BEM}=\widehat{CAM}\)(2 góc tương ứng) (1)
Xét \(\Delta ABM\)và \(\Delta ECM\)có:
BM = CM(gt)
\(\widehat{AMB}=\widehat{EMC}\)(2 góc đối đỉnh)
MA = ME(gt)
\(\Rightarrow\Delta ABM=\Delta ECM\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{CEM}\)(2 góc tương ứng) (2)
Từ (1) và (2)
\(\Rightarrow\widehat{BEM}+\widehat{CEM}=\widehat{CAM}+\widehat{BAM}\)
\(\Rightarrow\widehat{BEC}=\widehat{BAC}\)
Mà \(\widehat{BAC}=45^o\Rightarrow\widehat{BEC}=45^o\)
b) Ta có: \(\widehat{BEM}=\widehat{CAM}\)(theo a)
Mà 2 góc này ở vị trí so le trong
=> BE // AC
Ta có hình vẽ:
a/ Xét tam giác ABM và tam giác ACM có:
AB = AC (GT)
AM: cạnh chung
BM = MC (GT)
Vậy tam giác ABM = tam giác ACM (c.c.c)
Ta có: tam giác ABM = tam giác ACM
=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)
mà \(\widehat{AMB}\)+\(\widehat{AMC}\)=1800 (kề bù)
=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900
=> AM \(\perp\)BC (đpcm)
b/ Xét tam giác BDA và tam giác EDC có:
BD = DE (GT)
\(\widehat{BDA}\)=\(\widehat{EDC}\) (đối đỉnh)
AD = DC (GT)
Vậy tam giác BDA = tam giác EDC (c.g.c)
=> \(\widehat{BAC}\)=\(\widehat{DCE}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CE (đpcm)
c/ Đã vẽ và kí hiệu trên hình
d/ Xét tam giác AMB và tam giác CMF có:
AM = MF (GT)
\(\widehat{AMB}\)=\(\widehat{CMF}\) (đối đỉnh)
BM = MC (GT)
Vậy tam giác AMB = tam giác CMF (c.g.c)
=> \(\widehat{BAM}\)=\(\widehat{MFC}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CF
Ta có: AB // CE (1)
Ta có: AB // CF (2)
Từ (1),(2) => EC trùng CF hay E,C,F thẳng hàng
a) Chứng minh AM vuông góc với BC
\(\Delta ABC\) có AB = AC \(\Rightarrow\Delta ABC\) cân tại A
\(\Rightarrow\) AM là đường trung tuyến đồng thời là đường cao
Hay AM \(\perp\) BC.
b) Chứng minh: AC // BN
Xét hai tam giác vuông AMC và NMB có:
MA = MN (gt)
MB = MC (gt)
\(\Rightarrow\Delta AMC=\Delta NMB\left(hcgv\right)\)
\(\Rightarrow\) \(\widehat{MAC}=\widehat{MNB}\)
Mà hai góc này ở vị trí so le trong
\(\Rightarrow\) AC // BN (đpcm).
Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó ABEC là hình bình hành
Suy ra: AC//BE
Xét tứ giác AIEK có
AI//EK
AI=EK
Do đó: AIEK là hình bình hành
Suy ra: Hai đường chéo AE và IK cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của AE
nên M là trung điểm của IK
Giả sử AB//IK thì IM//AB
Xét ΔCAB có
M là trung điểm của BC
MI//AB
Do đó: I là trung điểm của AC