K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2022

Xét tam giác ABC vuông tại A, đường cao AH

Áp dụng hệ thức : AH^2 = HB . HC = 16 . 9 

=> AH = 4 . 3 = 12 cm 

25 tháng 1 2022

undefined

Áp dụng hệ thức liên quan tới đường cao vào Δvuông ABC, ta được:

AH²= BH.CH = 9.16 = 144

⇒ AH=12 (cm)

11 tháng 3 2017

AH = 12. đúng 100%. mình giải rùi

11 tháng 3 2017

Bạn tự vẽ hình ra hì. Mình vẽ ko được

                                      Bài làm

Tam giác AHB vuông tại H: AH^2+HB^2=AB^2

Tam giác AHC vuông tại H:AH^2+HC^2=AC^2

Tam giác ABC vuông tại A:BC^2=AB^2+AC^2

BC=HB+HC=9+16=25

BC^2=AH^2+HB^2+AH^2+HC^2=2AH^2+HB^2+HC^2=25^2=625

2HA^2+9^2+16^2=625

2HA^2+337=625

2HA^2=288

HA^2=144

HA=12

15 tháng 8 2015

tự vẽ hình:::::

áp dụng định lí py-ta-go vào tam giác BHA vuông tại H ta được:

BH2+AH2=AB2(1)

áp dụng định lí py-ta-go vào tam giác AHC vuông tại H ta được:

HC2+AH2=AC2(2)

áp dụng định lí py-ta-go vào tam giác ABC vuông tại A ta được:

AB2+AC2=BC2(3)

Công hai vế (1);(2) kết hợp với (3) ta được:

HB2+HC2+AH2+AH2=AB2+AC2

92+162+2AH2=BC2

337+2AH2=(9+16)2

2AH2=625-337

2AH2=288

AH2=144

=>AH=√144=12(cm)

15 tháng 8 2015

bạn ơi ko phải mk ko giúp mà về phần hình học mình dốt lắm

28 tháng 7 2023

A B H D E C I

a/

\(AH^2=HB.HC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích các hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow AH=\sqrt{HB.HC}=\sqrt{4.9}=6cm\)

\(\tan\widehat{ABC}=\dfrac{AH}{HB}=\dfrac{6}{4}=\dfrac{3}{2}\)

b/

Xét tg vuông AHB có

\(HB^2=BD.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Xét tg vuông AHC có

\(HC^2=CE.AC\) (lý do như trên)

\(CE.BD.AC.AB=HB^2.HC^2=\left(HB.HC\right)^2\)

Mà \(HB.HC=AH^2\) (cmt)

\(\Rightarrow CE.BD.AC.AB=AH^4\)

c/

\(HD\perp AB;AC\perp AB\) => HD//AC => HD//AE

\(HE\perp AC;AB\perp AC\) => HE//AB => HE//AD

=> ADHE là hình bình hành mà \(\widehat{A}=90^o\) => ADHE là HCN

Xét tg vuông ADH và tg vuông ADE có

HD = AE (cạnh đối HCN)

AD chung

=> tg ADH = tg ADE (Hai tg vuông có 2 cạnh góc vuông = nhau)

\(\Rightarrow\widehat{AED}=\widehat{AHD}\) 

\(\widehat{AHD}=\widehat{B}\) (cùng phụ với \(\widehat{BAH}\) ) 

\(\Rightarrow\widehat{AED}=\widehat{B}\) (1)

\(\widehat{C}+\widehat{B}=90^o\) (2)

\(\widehat{IAE}+\widehat{AED}=90^o\Rightarrow\widehat{IAE}+\widehat{B}=90^o\)  (3)

Từ (2) và (3) => \(\widehat{IAE}=\widehat{C}\) => tg AIC cân tại I => IA=IC

Ta có

\(\widehat{IAE}+\widehat{BAI}=\widehat{A}=90^o\)

\(\Rightarrow\widehat{C}+\widehat{BAI}=90^o\) mà \(\widehat{C}+\widehat{B}=90^o\)

\(\Rightarrow\widehat{BAI}=\widehat{B}\) => tg ABI cân tại I => IA=IB

Mà IA= IC (cmt)

=> IB=IC => I là trung điểm của BC

 

 

 

 

 

 

 

5 tháng 3 2022

Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=10cm\)

Xét tam giác ABC vuông tại A, đường cao AH 

* Áp dụng hệ thức \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{48}{10}=\dfrac{24}{5}cm\)

* Áp dụng hệ thức \(AB^2=HB.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{36}{10}=\dfrac{18}{5}cm\)

\(CH=BC-BH=10-\dfrac{18}{5}=\dfrac{32}{5}cm\)

20 tháng 2 2015

bài này ko đủ dữ kiện. nếu bổ sung dữ kiện thì ta có thể tính dc với cách tính của định lý pitago.những bài này thường có 3 dữ kiện trở lên 

 

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)

\(BH=\sqrt{12^2-9.6^2}=7.2\left(cm\right)\)