K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2022

$\frac{1.3.5...(2n-1)}{(n+1)(n+2)...(n+n)}=\frac{1}{2^n}(*)$

Với $n=1$ thì $(*)\Leftrightarrow \frac{1}{2}=\frac{1}{2}$

Vậy $(*)$ đúng với $n=1$

Giả sử với $n=k$,$ k\in \mathbb{N^*}$ thì $(*)$ đúng, tức là: 

$\frac{1.3.5...(2k-1)}{(k+1)(k+2)...(k+k)}=\frac{1}{2^k}$

Ta cần chứng minh với $n=k+1$ thì $(*)$ đúng, tức là: 

$\frac{1.3.5...(2k+1)}{(k+2)(k+3)...(2k+2)}=\frac{1}{2^{k+1}}=\frac{1}{2^k}.\frac{1}{2}$

$\Leftrightarrow \frac{1.3.5...(2k+1)}{(k+2)(k+3)...(2k+2)}=\frac{1.3.5...(2k-1)}{2(k+1)(k+2)...(k+k)}$

$\Leftrightarrow \frac{1.3.5...(2k-1)2k(2k+1)}{(k+2)(k+3)...2k(2k+1)(2k+2)}=\frac{1.3.5...(2k-1)}{2(k+1)(k+2)...2k}$

$\Leftrightarrow \frac{2k(2k+1)}{2k(2k+1)(2k+2)}=\frac{1}{2(k+1)}$

$\Leftrightarrow \frac{1}{(2k+2)}=\frac{1}{2(k+1)}$

Do đó với $n=k+1$ thì $(*)$ đúng

$\Rightarrow \frac{1.3.5...(2n-1)}{(n+1)(n+2)...(n+n)}=\frac{1}{2^n}$

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10 tháng 5 2022

thanks bạn

19 tháng 6 2016

yêu cầu là j vậy

19 tháng 6 2016

1+2+3+...+n=((n-1)+1)*n/2=n^2/2

1+3+5+...+(2n-1)=(((2n-1)-1)/2+1)*n/2=n^2/2

2+4+6+...+2n=((2n-2)/2+1)*n/2=n^2/2

DT
30 tháng 12 2023

Gọi ƯC(n+2;n+1)=d

=> n+2 chia hết cho d và n+1 chia hết cho d

=> (n+2)-(n+1) chia hết cho d

=> 1 chia hết cho d

=> d = \(\pm\)1

Hay n+2 và n+1 là 2 SNT cùng nhau

26 tháng 1 2017

n>=2 hiển nhiên n khác không rồi thừa quá.

​A=(n-1)(n)(n+1)(n+2)

2 tháng 10 2018

1, 2, 4, 8, 6

Love you

2 tháng 10 2018

bạn trả lời rõ hơn đi

28 tháng 10 2016

Ta có :

cho n = 2 thì thử biểu thức sau :

2 ; 3 

2 và 3 đều là 2 số nguyên tố cùng nhau ( vì có ước chung lớn nhất là 1 )

vậy nếu cho n = 13 thì :

13 và 14 đều là  nguyên tố cùng nhau .

Vậy n và n + 1 là số nguyên tố cùng nhau .

28 tháng 10 2016

Đặt d = ƯCLN ( n , n + 1 )

=> n chia hết cho d

    n + 1 chia hết cho d

=> 1 chia hết cho d

=> d thuộc Ư ( 1 )

=> d = 1

Vậy n và n + 1 là 2 số nguyên tố cùng nhau

5 tháng 1 2019

ak  ý bn đề là thế này ak

\(T\text{ìm}\)n\(\in\)N* sao cho: với mọi K là số tự nhiên thì \(n^k-n⋮1000\)

1 tháng 5 2019

Ta có :

n3 + n + 2 = ( n3 + 1 ) + ( n + 1 )

= ( n + 1 ) ( n2 - n + 1 ) + ( n + 1 )

= ( n + 1 ) ( n2 - n + 2 )

Ta thấy n + 1 > 1 ; n2 - n + 2 > 1 nên n3 + n + 2 là hợp số

1 tháng 5 2019

 Do n là số tự nhiên khác 0 =) n = 2k hoặc 2k + 1 với k là stn

(+)  Nếu n = 2k =)  n^3 + n + 2 = (2k)^3 + 2k + 2 chia hết cho 2     (1)

(+)  Nếu n = 2k + 1 =)  n^3 + n + 2 = lẻ + lẻ +chẵn = chẵn chia hết cho 2     (2)

    Từ (1) và (2) ta có điều phải chứng minh

16 tháng 2 2018

Các số tự nhiên nhỏ hơn 10 gồm : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Các số chẵn bao gồm : 0, 2, 4, 6, 8, 10, 12, 14, 16, …

Do đó :

      A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

      B = {0, 2, 4, 6, 8, 10, 12, 14, …}

      N* = {1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 10 ; 11 ; 12 ; 13 ; 14 ; …}

      N = {0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 10 ; 11 ; 12 ; 13 ; 14 ; 15 ; …}.

Nhận thấy mọi phần tử của các tập hợp A, B, N* đều là phần tử của tập hợp N.

Do đó ta viết : A ⊂ N, B ⊂ N, N* ⊂ N.

Gọi d=ƯCLN(n+1;n)

=>\(\left\{{}\begin{matrix}n+1⋮d\\n⋮d\end{matrix}\right.\)

=>\(n+1-n⋮d\)

=>\(1⋮d\)

=>d=1

=>ƯCLN(n+1;n)=1

=>\(\dfrac{n+1}{n}\) là phân số tối giản