K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC(ΔBAC cân tại A)

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)

Suy ra: AD=AE(Hai cạnh tương ứng)

Xét ΔAEI vuông tại E và ΔADI vuông tại D có

AI chung

AE=AD(cmt)

Do đó: ΔAEI=ΔADI(Cạnh huyền-cạnh góc vuông)

  
11 tháng 5 2020

Dễ mà : 

Gợi ý ta sẽ áp dụng hệ quả là : Trong một tam giác vuông thì Cạnh huyền luôn lớn hơn Cạnh góc vuông

17 tháng 5 2020

                                       Giải

B A E F D C

a , Xét \(\Delta BAD\)và \(\Delta BED\)có :

     AB = BE ( gt )

     BD chung 

     \(\widehat{ABD}=\widehat{DBE}\)( BD là đường phân giác \(\widehat{B}\))

\(\Rightarrow\text{​​}\text{​​}\text{​​}\text{​​}\text{​​}\text{​​}\Delta ABD=\Delta BDE\left(c.g.c\right)\)

b , Có \(\Delta ABD=\Delta BDE\)

\(\Rightarrow\widehat{E}=\widehat{A}=90^0\)( 2 góc tương ứng )

Ta có : \(\hept{\begin{cases}\widehat{AFD}+\widehat{ADF}=90^0\\\widehat{ECD}+\widehat{EDC}=90^0\\\widehat{ADF}=\widehat{EDC}\left(đđ\right)\end{cases}}\)

\(\Rightarrow\widehat{AFD}=\widehat{DCE}\)

Xét \(\Delta ADF\)vuông tại A và \(\Delta EDC\)vuông tại E có :

    \(\hept{\begin{cases}\text{ AF = EC ( gt )}\\\widehat{AFD\: }=\widehat{DCE}\left(cmt\right)\end{cases}\Rightarrow\Delta ADF=\Delta EDC\left(cgv.gn\right)}\)

\(\Rightarrow DF=DC\)( 2 cạnh tương ứng )

c , Có \(D\in AC\)( BD cắt AC tại D )

\(\widehat{EDC}+\widehat{ADE}=180^0\)

Mà \(\widehat{ADF}=\widehat{EDC}\)( 2 góc đối đỉnh )

\(\Rightarrow\widehat{ADF}+\widehat{ADE}=180^0\)

\(\Rightarrow\widehat{EDF}=180^0\)

\(\Rightarrow\)E , D , F cùng nằm trên 1 đường thẳng .

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

góc BAD chung

=>ΔABD=ΔACE

b: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

EC=BD

=>ΔEBC=ΔDCB

c: Xét ΔEAM vuông tại E và ΔDAM vuông tại D có

AM chung

AE=AD

=>ΔEAM=ΔDAM

a: BC=10cm

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó; ΔABD=ΔEBD

a: BC=10cm

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

c: ta có: ΔABD=ΔEBD

nên BA=BE

hay ΔBAE cân tại B

d: Ta có: ΔABD=ΔEBD

nên DA=DE
hay D nằm trên đường trung trực của AE(1)

Ta có: BA=BE

nên B nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

5 tháng 8 2016

1)

undefined

a) Ta có: góc BAD+góc CAE+góc BAC=180 độ

Mà góc BAC=90 độ nên góc BAD+ góc CAE=90 độ (1)

Vì tam giác ACE vuông tại E nên góc ACE+góc CAE=90 độ(2)

Từ (1) và (2) => góc BAD= góc ACE

Xét tam giác ABD và tam giác ACE có:

góc ADB=góc AED=90 độ

AB=AC ( vì tam giác ABC vuông cân tại A)

góc BAD=góc ACE (cmt)

=> tam giác ABD=tam giác ACE (cạnh huyền-góc nhọn)

b) Theo câu a) Tam giác ABD=tam giác ACE

=> DA=EC và BD=AE

Mà DE=DA+AE nên DE=EC+BD

 

 

5 tháng 8 2016

Cảm ơn bạn nhayeu