Cho t/g ABC. M,N lần lượt là Tđiểm AB,AC. Lấy D/N là TĐiểm của MD
C/m:a) CD=Am;Cd//Am
b) t/g BMC= T/g DCM
c) MN//BC, MN=1/2 Bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối tia ED lấy điểm F sao cho E là trung điểm DFXét t/g ADE và t/g CFE có
AE = CE (GT)
\(\widehat{AED}=\widehat{CEF}\) (đối đỉnh)DE = EF ( cách vẽ)
=> t/g ADE = t/g CFE (c.g.c)
=> AD = CF = BD ; \(\widehat{ADE}=\widehat{CFE}\)
Mà 2 góc này ở vị trí slt
=> CF // AB
=> \(\widehat{BDC}=\widehat{DCF}\) (slt)
Xét t/g BDC và t/g FCD có
BD = FC
\(\widehat{BDC}=\widehat{DCF}\)
DC: chung
=> t/g BDC = t/g FCD(c.g.c)
=> \(\widehat{BCD}=\widehat{FDC}\) ; BC = FD = 2EDMà 2 góc này ở vị trí slt
=> DF // BC
=> DE // BC
a: Xét ΔABC có
M là trung điểm của BA
N la trung điểm của BC
Do đó: MN là đường trung bình
=>MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của DC
Do đó: QP là đường trug bình
=>QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
b: Xét tứ giác MDPB có
MB//DP
MB=DP
Do đó: MDPB là hình bình hành
c: Xét ΔCDK có
P là trung điểm của CD
PL//DK
DO đó:L là trung điểm của CK
=>CL=LK(1)
Xét ΔALB có
Mlà trung điểm của AB
MK//LB
Do đó:K là trung điểm của AL
=>AK=KL(2)
Từ (1) và (2) suy ra AK=KL=LC
a: Xét ΔABC có
M là trung điểm của BA
N la trung điểm của BC
Do đó: MN là đường trung bình
=>MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của DC
Do đó: QP là đường trug bình
=>QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
b: Xét tứ giác MDPB có
MB//DP
MB=DP
Do đó: MDPB là hình bình hành
c: Xét ΔCDK có
P là trung điểm của CD
PL//DK
DO đó:L là trung điểm của CK
=>CL=LK(1)
Xét ΔALB có
Mlà trung điểm của AB
MK//LB
Do đó:K là trung điểm của AL
=>AK=KL(2)
Từ (1) và (2) suy ra AK=KL=LC
Hình bạn tự vẽ nha!
b) Xét 2 \(\Delta\) \(ABM\) và \(ACM\) có:
\(AB=AC\left(gt\right)\)
\(BM=CM\) (vì M là trung điểm của \(BC\))
Cạnh AM chung
=> \(\Delta ABM=\Delta ACM\left(c-c-c\right)\)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng).
Ta có: \(\widehat{AMB}+\widehat{AMC}=180^0\) (vì 2 góc kề bù)
Mà \(\widehat{AMB}=\widehat{AMC}\left(cmt\right)\)
=> \(2.\widehat{AMB}=180^0\)
=> \(\widehat{AMB}=180^0:2\)
=> \(\widehat{AMB}=90^0.\)
=> \(\widehat{AMB}=\widehat{AMC}=90^0\)
=> \(AM\perp BC.\)
c) Xét 2 \(\Delta\) vuông \(ADM\) và \(AEM\) có:
\(\widehat{AMD}=\widehat{AME}=90^0\) (vì \(AM\perp BC\))
\(AD=AE\left(gt\right)\)
Cạnh AM chung
=> \(\Delta ADM=\Delta AEM\) (cạnh huyền - góc nhọn).
Chúc bạn học tốt!
Giúp mik vs bạn nào làm đúng mik k cho