K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:

\(EF^2=DE^2+DF^2\)

\(\Leftrightarrow EF^2=9^2+12^2=225\)

hay EF=15(cm)

Vậy: EF=15cm

30 tháng 3 2021

a) Xét tam giác EDF có: EF2 = DE2 + DF(đ/lí py-ta-go)

                                         =>  EF= 9+ 122

                                                 =>  EF2 = 81 + 144 = 225

                                         =>  EF = 112,5 cm

a) Xét ΔDEF vuông tại E và ΔDEK vuông tại E có 

DE chung

EF=EK(gt)

Do đó: ΔDEF=ΔDEK(hai cạnh góc vuông)

a: Xét ΔMED vuông tại E và ΔMIN vuôngtại I có

MD=MN

góc EMD=góc IMN

=>ΔMED=ΔMIN

b: ΔMED=ΔMIN

=>góc MDE=góc MNI=góc MDP

=>DP=NP

a: Xét tứ giác DIMK có

\(\widehat{DIM}=\widehat{DKM}=\widehat{KDI}=90^0\)

=>DIMK là hình chữ nhật

b: Xét tứ giác DEHF có

M là trung điểm chung của DH và EF

=>DEHF là hình bình hành

Hình bình hành DEHF có \(\widehat{FDE}=90^0\)

nên DEHF là hình chữ nhật

6 tháng 12 2023

Hình?

1 tháng 1 2022

1) Xét tam giác DEF có:

+ A là trung điểm của DE (gt).

+ B là trung điểm của DF (gt).

\(\Rightarrow\) AB là đường trung bình của tam giác DEF.

\(\Rightarrow\) AB // EF và AB = \(\dfrac{1}{2}\) EF (Tính chất đường trung bình trong tam giác).

2) Xét tam giác DEF vuông tại D có:

DA là đường trung tuyến (A là trung điểm của EF).

\(\Rightarrow\) DA = \(\dfrac{1}{2}\) EF (Tính chất đường trung tuyến trong tam giác vuông).

3) Xét tam giác DEF có:

+ DB là đường trung tuyến (B là trung điểm của EF).

+ DB = \(\dfrac{1}{2}\) EF (gt).

\(\Rightarrow\) Tam giác DEF vuông tại D.

a) Xét ΔAED vuông tại E và ΔAFD vuông tại F có 

AD chung

\(\widehat{EAD}=\widehat{FAD}\)(AD là tia phân giác của \(\widehat{EAF}\))

Do đó: ΔAED=ΔAFD(cạnh huyền-góc nhọn)

Suy ra: DE=DF(Hai cạnh tương ứng)

Ta có: AD là tia phân giác của \(\widehat{BAC}\)(gt)

nên \(\widehat{BAD}=\widehat{CAD}=\dfrac{\widehat{BAC}}{2}=\dfrac{120^0}{2}=60^0\)

hay \(\widehat{EAD}=\widehat{FAD}=60^0\)

Ta có: ΔAED vuông tại E(gt)

nên \(\widehat{EAD}+\widehat{EDA}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{EDA}=90^0-60^0=30^0\)

Ta có: ΔAFD vuông tại F(Gt)

nên \(\widehat{FAD}+\widehat{FDA}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{FDA}=90^0-60^0=30^0\)

Ta có: \(\widehat{EDA}+\widehat{FDA}=\widehat{EDF}\)(tia DA nằm giữa hai tia DE và DF)

\(\Leftrightarrow\widehat{EDF}=30^0+30^0\)

hay \(\widehat{EDF}=60^0\)

Xét ΔDEF có DE=DF(cmt)

nên ΔDEF cân tại D(Định nghĩa tam giác cân)

Xét ΔDEF cân tại D có \(\widehat{EDF}=60^0\)(cmt)

nên ΔDEF đều(Dấu hiệu nhận biết tam giác đều)

18 tháng 3 2021

CÒN CÂU B,C 

MÌNH CẦN GẤP