K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại FCho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại F. Gọi K,L, R lần lượt là chân đường vuông góc kẻ từ N...
Đọc tiếp
Cho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại FCho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại F. Gọi K,L, R lần lượt là chân đường vuông góc kẻ từ N đến AC, AD, BC. Gọi giao điểm của DM và CN là S. CMR:
1. Ba điểm K, L, R thẳng hàng
2. HN.CS=NC.SH
3. Tia phân giác của góc BAC cắt BC tại I, kẻ đường thẳng đi qua C và vuông góc với đường thẳng Al tại P, đường thẳng CP cắt đường thẳng AO tại Q. Gọi G là trung điểm của đoạn thẳng IQ. CMR: đường thẳng PG đi qua trung điểm của đoạn thẳng AC
0
19 tháng 3 2023

Bt đáp án chx

Giúp mk câu c

Xét (O) có 

\(\widehat{ABC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)

\(\widehat{AKC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)

Do đó: \(\widehat{ABC}=\widehat{AKC}\)(Hệ quả góc nội tiếp)

hay \(\widehat{ABD}=\widehat{AKC}\)

Xét (O) có

\(\widehat{ACK}\) là góc nội tiếp chắn \(\stackrel\frown{AK}\)

\(sđ\stackrel\frown{AK}=180^0\)(AK là đường kính)

Do đó: \(\widehat{ACK}=90^0\)(Hệ quả góc nội tiếp)

Xét ΔADB vuông tại D và ΔACK vuông tại C có 

\(\widehat{ABD}=\widehat{AKC}\)

Do đó: ΔADB\(\sim\)ΔACK(g-g)

27 tháng 4 2023

giúp em vs ạ https://hoc24.vn/hoi-dap/tim-kiem?id=7957785622206&q=Cho+tam+gi%C3%A1c+ABC+nh%E1%BB%8Dn+n%E1%BB%99i+ti%E1%BA%BFp+(O;R).+%C4%90%C6%B0%E1%BB%9Dng+cao+AD,+BE,+CF+c%E1%BA%AFt+nhau+t%E1%BA%A1i+H.+CMR+:+N%E1%BA%BFu+AD+BC=BE+AC=CF+AB+th%C3%AC+tam+gi%C3%A1c+ABC+%C4%91%E1%BB%81u.

1: Xét ΔABD vuông tại D và ΔACE vuông tại E có 

\(\widehat{A}\) chung

Do đó: ΔABD∼ΔACE

Suy ra: AB/AC=AD/AE
hay \(AB\cdot AE=AC\cdot AD\)

2: Xét ΔADE và ΔABC có 

AD/AB=AE/AC

\(\widehat{DAE}\) chung

Do đó:ΔADE∼ΔABC

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

góc BDH+góc BFH=180 độ

=>BDHF nội tiếp

b; góc ACK=1/2*sđ cung AK=90 độ

Xét ΔACK vuông tại C và ΔADB vuông tại D có

góc AKC=góc ABD

=>ΔACK đồng dạng với ΔADB

=>AC/AD=AK/AB

=>AC*AB=AD*AK

a: Xét ΔBDA vuông tại D và ΔBFC vuông tại F co

góc B chung

=>ΔBDA đồng dạng vói ΔBFC

b: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AFE=góc ACB

=>ΔAFE đồng dạng vói ΔACB

c: Xét ΔAEH vuông tại E và ΔADC vuông tại D có

góc EAH chung

=>ΔAEH đồng dạng vói ΔADC

=>AD*AH=AE*AC

Xét ΔCEH vuông tại E và ΔCFA vuông tại F có

góc ECH chung

=>ΔCEH đồng dạng vói ΔCFA

=>CH*CF=CE*CA

=>AH*AD+CH*CF=CA^2

a: góc AEB=góc ADB=90 độ

=>AEDB nội tiếp

b,c: M ở đâu vậy bạn?

a) Xét tứ giác AEHF có

\(\widehat{HEA}+\widehat{HFA}=180^0\)

nên AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét tứ giác AEDB có 

\(\widehat{AEB}=\widehat{ADB}\left(=90^0\right)\)

nên AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

\(DC=\sqrt{5^2-3^2}=4\left(cm\right)\)

Xét ΔDBH vuông tại D và ΔDAC vuông tại D có

góc DBH=góc DAC

=>ΔDBH đồng dạng với ΔDAC

=>DB/DA=DH/DC

=>DB/DH=DA/DC=3/4