cho hình chóp SABCD đáy là hình thang có 2 góc vuông A và B . AB=BC=a; CD=2a . SA vuông góc với đấy SA=a/ tính Thể tích khối SABCD và khoảng cách từ D đến mặt (SBC)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kẻ CH_|_AD. AD=AH+HD= BC+căn ( CD^2- CH^2). Thay số.
V=1/3. SA. S abcd
Sabcd=1/2.( BC+ AD).AB
d( D; ( SBC))=d( A;(SBC))=AK
kẻ AK _|_ SB
Ta có: \(S_{ABCD}=\dfrac{\left(BC+AD\right).AB}{2}=\dfrac{3}{2}a^2\)
a, \(h=SA=AB.tan60^o=a\sqrt{3}\)
\(\Rightarrow V=\dfrac{1}{3}.S_{ABCD}.h=\dfrac{1}{3}.\dfrac{3}{2}a^2.a\sqrt{3}=\dfrac{\sqrt{3}}{2}a^3\)
b, \(h=SA=AD.tan45^o=2a\)
\(\Rightarrow V=\dfrac{1}{3}.S_{ABCD}.h=\dfrac{1}{3}.\dfrac{3}{2}a^2.2a=a^3\)
c, Dễ chứng minh được SC vuông góc với CD tại C \(\Rightarrow\widehat{SCA}=30^o\)
\(\Rightarrow h=SA=AC.tan30^o=AD.sin45^o.tan30^o=\dfrac{\sqrt{6}}{3}a\)
\(\Rightarrow V=\dfrac{1}{3}.S_{ABCD}.h=\dfrac{1}{3}.\dfrac{3}{2}a^2.\dfrac{\sqrt{6}}{3}a=\dfrac{\sqrt{6}}{6}a^3\)
Gọi O là trung điểm AD
\(\Rightarrow OA=OB=OC=OD=a\)
\(\Rightarrow\) O là tâm đường tròn ngoại tiếp đáy
Gọi I là trung điểm SD \(\Rightarrow IO\perp\left(ABCD\right)\) đồng thời I là tâm đường tròn ngoại tiếp SAD (tam giác SAD vuông tạm A)
\(\Rightarrow I\) là tâm mặt cầu ngoại tiếp
\(SD=\sqrt{SA^2+AD^2}=2a\sqrt{2}\)
\(\Rightarrow R=\dfrac{1}{2}SD=a\sqrt{2}\)
Vì SA vuông góc (ABCD)
=>SA vuông góc CD
Gọi I là trung điểm của AD
=>AI=BC=a
mà AI//BC
nên AB=CI=a
=>AB=CI=ID
=>ΔACD vuông tại C
=>CD vuông góc AC
=>CD vuông góc (SAC)
=>(SCD) vuông góc (SAC)
Vẽ AE vuông góc SC tạiE
=>AE vuông góc (SCD)
mà \(A\in\left(P\right)\perp\left(SCD\right)\)
nên \(AE\in\left(P\right)\)
=>\(E=SC\cap\left(P\right)\)
\(E\in\left(P\right)\cap\left(SCI\right)\)
\(\left(P\right)\supset AB\)//CI thuộc (SCI)
=>(P) cắt (SCI)=Ex//AB//CI
Gọi F=Ex giao SI
=>(P) cắt (SAD) tại AJ
Gọi F=AJ giao SD
=>F=(P)giao (SD)
=>Tứ giác cần tìm là ABEF