cho hình vuông ABCD nội tiếp đường tròn tâm O. Gọi M,N lần lượt là trung điểm của BC và CD. Đường thẳng AM; BN cắt đường tròn tại E và F. Số đo góc EDF = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ OI vuông góc với FG tại I. Ta chứng minh OI=OM =a/2 (a là cạnh của hình vuông)
KHI đó GF tiếp xúc với đường tròn tại I
Hai tam giác vuông ADG và FBK có:
\(\widehat{DAG}=\widehat{KFB}\)( \(\widehat{A_1}+\widehat{A_2}=90^0\Rightarrow\widehat{A_1}+\widehat{K_1}=90^0\)MÀ \(\widehat{K_1}+\widehat{KFB}=90^0\))
\(\Rightarrow\Delta ADG~\Delta FBK\Rightarrow\frac{AD}{FB}=\frac{DG}{BK}\)
\(\Rightarrow DG=\frac{AD}{FB}.BK=\frac{a}{3a}.\frac{a}{2}=\frac{2a}{3}\)
Từ đó \(CG=\frac{a}{3};MG=\frac{a}{2}-\frac{a}{3}=\frac{a}{6}\)
Trong tam giác vuông CGF có:
\(GF^2=CF^2+CG^2=\frac{a^2}{16}+\frac{a^2}{9}=\frac{25a^2}{144}\Rightarrow CF=\frac{5a}{12}\)
Ta có: \(S_{OGF}=S_{OMCN}-\left(S_{ÒNF}+S_{OMG}+S_{CGF}\right)\)\(=\frac{a^2}{4}-\left(\frac{a^2}{16}+\frac{a^2}{24}+\frac{a^2}{24}\right)=\frac{5a^2}{48}\)(1)
Mặt khác: \(S_{OGF}=\frac{1}{2}.OI.GF=OI.\frac{5a}{24}\)(2)
Từ (1);(2) \(\Rightarrow\frac{5a^2}{48}=OI.\frac{5a}{24}\Rightarrow OI=\frac{a}{2}\)
Vậy GF tiếp xúc với đường tròn tâm O tại I
đánh dấu A1 vào góc DAG , A2 vào góc BAC, K1 vào góc BKC. kẻ OM vuông góc DC, kẻ OG, kẻ OI vuông góc GF
Chọn đáp án C
Do O là tâm đường tròn nội tiếp hình vuông ABCD nên bán kính đường tròn nội tiếp hình vuông là: