cho góc xoy khác góc bẹt. Trên tia Õ lấy 2 điểm A và B (OA<OB), Trên tia Oy lấy 2 điểm C và D sao cho OC=OD. Gọi T là giao điểm của AD và BC .a) Chứng minh rằng AI=IC;BI=ID b) AC song song với BD c) Gọi h là trung điểm của AC, K là trung điểm của BD. Chứng minh rằng O,H,I,K thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAOC và ΔBOC có
OA=OB
OC chung
AC=BC
Do đó: ΔAOC=ΔBOC
b: Ta có: ΔAOC=ΔBOC
nên \(\widehat{AOC}=\widehat{BOC}\)
hay OC là tia phân giác của góc xOy
c: Ta có: OA=OB
nên O nằm trên đường trung trực của AB(1)
Ta có: MA=MB
nên M nằm trên đường trung trực của AB(2)
Ta có: CA=CB
nên C nằm trên đường trung trực của AB(3)
Từ (1), (2) và (3) suy ra O,M,C thẳng hàng
a) Xét ΔAOH vuông tại H và ΔBOH vuông tại H có
OH chung
\(\widehat{AOH}=\widehat{BOH}\)(OH là tia phân giác của \(\widehat{AOB}\))
Do đó: ΔAOH=ΔBOH(cạnh góc vuông-góc nhọn kề)
Suy ra: OA=OB(Hai cạnh tương ứng)
b) Xét ΔCAO và ΔCBO có
OA=OB(cmt)
\(\widehat{AOC}=\widehat{BOC}\)(OC là tia phân giác của \(\widehat{AOB}\))
OC chung
Do đó: ΔCAO=ΔCBO(c-g-c)
Suy ra: CA=CB(hai cạnh tương ứng) và \(\widehat{OAC}=\widehat{OBC}\)(hai góc tương ứng)