Cho tam giác abc vuông tại A có đường cao AH. TrênAH lấy điểm I (I khác A và H). Gọi D là hình chiếu của C trên BI; BD cắt AC tại E. Chứng minh:
a. AB²= BI.BD
b. kéo dài AB cắt DC tại M. Chứng minh MA.MB = MD.MC
c. BE.BD + CE.CA= BC²
d. Nối ME cắt BC ở F. Chứng minh: E là giao của các đường phân giác trong tam giác ADF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét tam giác $BFD$ và $BDE$ có:
$\widehat{B}$ chung
$\widehat{BFD}=\widehat{BDE}=90^0$
$\Rightarrow \triangle BFD\sim \triangle BDE$ (g.g)
$\Rightarrow \frac{BF}{BD}=\frac{BD}{BE}\Rightarrow BD^2=BF.BE(1)$
Tương tự, ta chứng minh được $\triangle EFD\sim \triangle EDB$ (g.g)
$\Rightarrow \frac{EF}{ED}=\frac{ED}{EB}\Rightarrow DE^2=EF.EB(2)$
Từ $(1);(2)\Rightarrow (\frac{BD}{DE})^2=\frac{BF}{EF}$
Ta có đpcm.
Gọi K là trung điểm của BD
Xét ΔDBH có
K,I lần lượt là trung điểm của DB,DH
=>KI là đường trung bình của ΔDBH
=>KI//BH
Ta có: KI//BH
AH\(\perp\)BH
Do đó: KI\(\perp\)AH
Xét ΔAKH có
KI,HD là các đường cao
KI cắt HD tại I
Do đó: I là trực tâm
=>AI\(\perp\)HK
Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
Xét ΔBDC có
K,H lần lượt là trung điểm của BD,BC
=>KH là đường trung bình
=>KH//DC
Ta có: KH//DC
AI\(\perp\)KH
Do đó: AI\(\perp\)DC
a/
\(AH^2=HB.HC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích các hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow AH=\sqrt{HB.HC}=\sqrt{4.9}=6cm\)
\(\tan\widehat{ABC}=\dfrac{AH}{HB}=\dfrac{6}{4}=\dfrac{3}{2}\)
b/
Xét tg vuông AHB có
\(HB^2=BD.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Xét tg vuông AHC có
\(HC^2=CE.AC\) (lý do như trên)
\(CE.BD.AC.AB=HB^2.HC^2=\left(HB.HC\right)^2\)
Mà \(HB.HC=AH^2\) (cmt)
\(\Rightarrow CE.BD.AC.AB=AH^4\)
c/
\(HD\perp AB;AC\perp AB\) => HD//AC => HD//AE
\(HE\perp AC;AB\perp AC\) => HE//AB => HE//AD
=> ADHE là hình bình hành mà \(\widehat{A}=90^o\) => ADHE là HCN
Xét tg vuông ADH và tg vuông ADE có
HD = AE (cạnh đối HCN)
AD chung
=> tg ADH = tg ADE (Hai tg vuông có 2 cạnh góc vuông = nhau)
\(\Rightarrow\widehat{AED}=\widehat{AHD}\)
\(\widehat{AHD}=\widehat{B}\) (cùng phụ với \(\widehat{BAH}\) )
\(\Rightarrow\widehat{AED}=\widehat{B}\) (1)
\(\widehat{C}+\widehat{B}=90^o\) (2)
\(\widehat{IAE}+\widehat{AED}=90^o\Rightarrow\widehat{IAE}+\widehat{B}=90^o\) (3)
Từ (2) và (3) => \(\widehat{IAE}=\widehat{C}\) => tg AIC cân tại I => IA=IC
Ta có
\(\widehat{IAE}+\widehat{BAI}=\widehat{A}=90^o\)
\(\Rightarrow\widehat{C}+\widehat{BAI}=90^o\) mà \(\widehat{C}+\widehat{B}=90^o\)
\(\Rightarrow\widehat{BAI}=\widehat{B}\) => tg ABI cân tại I => IA=IB
Mà IA= IC (cmt)
=> IB=IC => I là trung điểm của BC
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
b: ta có: ADHE là hình chữ nhật
=>AH cắt DE tại trung điểm của mỗi đường
mà O là trung điểm của AH
nên O là trung điểm của DE
c: Ta có: ADHE là hình chữ nhật
=>DH=AE và DH//AE
Ta có: DH//AE
M\(\in\)AE
Do đó: DH//AM
Ta có: DH=AE
AE=AM
DO đó: DH=AM
Xét tứ giác AHDM có
DH//AM
DH=AM
Do đó: AHDM là hình bình hành
=>AH//MD
=>AO//MD