Cho \(\Delta ABC\) vuông tại A có góc B = 75 độ; BC=10 cm
a)Tính góc
b) Trên cạnh BA kéo dài về phía A đoạn AD=AB, tính diện tích \(\Delta CBD\)
(Gợi ý: Hạ đường cao sẽ có \(\Delta\)vuông với góc nhọn = 30 độ
giúp rồi mình tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Gọi M là trung điểm của BC
Vẽ BE là tia phân giác của góc B, E thuộc AC
nối M với E
ta có: BM =CM = 1/2.BC ( tính chất trung điểm)
AB=1/2.BC (gt)
=> BM = CM= AB ( =1/2.BC)
Xét tam giác ABE và tam giác MBE
có: AB = MB (chứng minh trên)
góc ABE = góc MBE (gt)
BE là cạnh chung
\(\Rightarrow\Delta ABE=\Delta MBE\left(c-g-c\right)\)
=> góc BAE = góc BME = 90 độ ( 2 cạnh tương ứng)
=> góc BME = 90 độ
\(\Rightarrow BC\perp AM⋮M\)
Xét tam giác BEM vuông tại M và tam giác CEM vuông tại M
có: BM=CM(gt)
EM là cạnh chung
\(\Rightarrow\Delta BEM=\Delta CEM\left(cgv-cgv\right)\)
=> góc EBM = góc ECM ( 2 cạnh tương ứng)
mà góc EBM = góc ABE = 1/2. góc B (gt)
=> góc EBM = góc ABE = góc ECM
Xét tam giác ABC vuông tại A
có: \(\widehat{B}+\widehat{ECM}=90^0\) ( 2 góc phụ nhau)
=> góc EBM + góc ABE + góc ECM = 90 độ
=> góc ECM + góc ECM + góc ECM = 90 độ
=> 3.góc ECM = 90 độ
góc ECM = 90 độ : 3
góc ECM = 30 độ
=> góc C = 30 độ
bạn hãy bấm vào câu hỏi tương tự
tích đúng cho mình nhé bạn
\(a,\widehat{ABC}=60^o\)( theo đề bài )
\(b,\)Xét \(\Delta ABD\)và \(\Delta HBD\)có :
\(BD\)là cạnh chung \(\left(1\right)\)
\(\widehat{B1}=\widehat{B2}=30^o\)( do \(BD\)là tia phân giác của \(\widehat{ABC}\)) \(\left(2\right)\)
Ta có : \(\widehat{D1}=180^o-\widehat{B1}-\widehat{A}\)
\(=180^o-30^o-90^o=60^o\)
\(\widehat{D2}=180^o-\widehat{B2}-\widehat{H1}\)
\(=180^o-30^o-90^o=60^o\)
\(\Rightarrow\widehat{D1}=\widehat{D2}\)\(\left(3\right)\)
Từ : \(\left(1\right);\left(2\right);\left(3\right)\)suy ra : \(\Delta ABD=\Delta HBD\left(g.c.g\right)\)
\(c,\)Không có điểm \(K\)
Gọi M là trung điểm của BH => BM = MH = AC
Vẽ tam giác đều BCO => BO = BC = CO
Tam giác ABC vuông tại A => góc BCA = 90o - ABC = 15o
Góc MBO = ABC - OBC = 75o - 60o = 15o
+) Xét tam giác BMO và CAB có: BM = CA; góc MBO = ACB (= 15o) ; BO = CB
=> tam giác BMO = CAB ( c- g- c)
=> góc BMO = CAB = 90o => OM vuông góc với BH
+) Tam giác BOH có: OM là đường cao đông thời là trung tuyến => Tam giác BOH cân tại O
=> BO = OH và góc BHO = HBO = 15o
=> góc BOH = 180o - 2.15o = 150o
+) Ta có góc BOH + HOC + COB = 360o => góc HOC = 360o - BOH - COB = 150o
+) Xét tam giác BOH và COH có: BO = CO; góc BOH = COH; OH chung
=> tam giác BOH = COH ( c- g - c)
=> góc BHO = CHO = 15o
=> góc BHC = 15o + 15o = 30o
a: Xet ΔABD vuông tại B và ΔAHD vuông tại H có
AD chung
góc BAD=góc HAD
=>ΔABD=ΔAHD
b; AB=AH
DB=DH
=>AD là trung trực của BH
c: Xet ΔDBI vuông tại B và ΔDHC vuông tại H có
DB=DH
góc BDI=góc HDC
=>ΔBDI=ΔHDC
=>DI=DC
=>ΔDIC cân tại D
d: Xét ΔAIC có AB/BI=AH/HC
nên BH//IC
e: AD vuông góc BH
BH//IC
=>AD vuông góc IC
a)\(\Delta ABC\) có: góc BAC+góc ABC + góc ACB = 180 độ
góc ACB=180 độ -90 độ-75 độ
góc ACB = 15 độ
mình chỉ biết làm ý a thôi
LÀm nhanh ý b giúp nhé