3. Cho tam giác ABC vuông tại A, phân giác BF (F thuộc AC). Kẻ CH vuông góc với BF tại H . Lấy E sao cho H là trung điểm của EF. Kẻ FK vuông góc với BC (K thuộc BC). a) Chứng minh: CE = CF; BA = BK b) AK // CH c) CH, FK, AB đồng quy tại một điểm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, tam giác vuông CHF=CHE (c.g.c) => CF=CE => Tam giác CEF cân tại C
gọi O là giao điểm của Ak và BF
tam giác vuông ABF=KBF ( cạnh huyền góc nhọn ) => BA=BK
BA=BK; BO chung; ABO=KBO ( BF phân giác ) => tam giác ABO=KBO (c.g.c)=> AOB=KOB ở vị trí kề bù AOB+KOB=180
=> AOB=KOB=90=> BF vuông AK
=> AK//HC ( cùng vuông BF)
b, tam giác vuông ABF=KBF => AF=FK
cạnh huyền FC > FK => FC > FA
c, gọi D là giao điểm AB;CH
tam giác BDC có BH ; AC là 2 đường cao cắt nhau tạo F
mà FK vuông BC nên DK là đường cao thứ 3 trong tam giác này
=> Ba đường thẳng CH, FK,AB đồng quy
a: Xét ΔCEF có
CH vừa là đường cao, vừa là trung tuyến
=>ΔCEF cân tại C
Xét ΔBAF vuông tại A và ΔBFK vuông tại K co
BF chung
góc ABF=góc KBF
=>ΔBAF=ΔBFK
=>BA=BK
b: BA=BK
FA=FK
=>BF là trung trực của AK
=>BF vuông góc AK
=>AK//CH
c: Gọi M là giao của CH với AB
Xét ΔBMC có
BH,CA là đường cao
BH cắt CA tại F
=>Flà trực tâm
=>MF vuông góc BC
=>CH,FK,AB đồng quy
1:Xét ΔABE và ΔFBE có
BA=BF
\(\widehat{ABE}=\widehat{FBE}\)
BE chung
Do đó: ΔABE=ΔFBE
2: Ta có: ΔABE=ΔFBE
nên \(\widehat{BAE}=\widehat{BFE}=90^0\)
hay FE\(\perp\)BC
Bài 3:
a: Xét ΔABM và ΔACN có
AB=AC
góc ABM=góc ACN
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH=góc CAK
Do đó; ΔAHB=ΔAKC
Suy ra: AH=AK và BH=CK
c: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có
MB=CN
góc M=góc N
Do đó ΔHBM=ΔKCN
Suy ra: góc HBM=góc KCN
=>góc OBC=góc OCB
hay ΔOBC can tại O
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
Gọi AM cắt DE tại I
Theo tính chất hình chữ nhật ADHE : \(\widehat{E_1}=\widehat{HAC}=\widehat{MBA};\widehat{A_1}=\widehat{D_1}=\widehat{AHE}=\widehat{MCA}\)
\(\Rightarrow\widehat{A_1}=\widehat{ACM}\Rightarrow\Delta ACM\)cân tại M \(\Rightarrow MA=MC\)(*)
Do \(\Delta AID\)vuông tại I suy ra
\(\widehat{DAM}+\widehat{D_1}=90^0\Leftrightarrow\widehat{DAM}+\widehat{DAH}=90^0\left(1\right)\)
\(\widehat{ABM}+\widehat{DAH}=90^0\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{DAM}=\widehat{ABM}\)
\(\Rightarrow\Delta ABM\)cân tại M \(\Rightarrow MA=MB\)(**)
Từ (*);(**) suy ra MB=MC hay M là trung điểm BC . Do MF//AC suy ra
\(\widehat{MFC}=\widehat{ACF}\)
Mà
\(\widehat{ACF}=\widehat{MCF}\Rightarrow\widehat{MFC}=\widehat{MCF}\Rightarrow\Delta MFC\)cân tại M suy ra MC=MF
Mà MB=MC suy ra \(\Delta BFC\) có FM là trung tuyến \(FM=\frac{1}{2}BC\Rightarrow\) \(\Delta BFC\)vuông tại F hay \(BF\perp CF\left(đpcm\right)\)
a: Xét ΔFBC vuông tại F và ΔECB vuông tại E có
BC chung
\(\widehat{FBC}=\widehat{ECB}\)
DO đó: ΔFBC=ΔECB
Suy ra: FB=EC
b: Ta có: AF+FB=AB
AE+EC=AC
mà BF=CE
và AB=AC
nên AF=AE
Xét ΔABC có AF/AB=AE/AC
nên FE//BC
a, tam giác vuông CHF=CHE (c.g.c) => CF=CE => Tam giác CEF cân tại C
gọi O là giao điểm của Ak và BF
tam giác vuông ABF=KBF ( cạnh huyền góc nhọn ) => BA=BK
BA=BK; BO chung; ABO=KBO ( BF phân giác ) => tam giác ABO=KBO (c.g.c)=> AOB=KOB ở vị trí kề bù AOB+KOB=180
=> AOB=KOB=90=> BF vuông AK
=> AK//HC ( cùng vuông BF)
b, tam giác vuông ABF=KBF => AF=FK
cạnh huyền FC > FK => FC > FA
c, gọi D là giao điểm AB;CH
tam giác BDC có BH ; AC là 2 đường cao cắt nhau tạo F
mà FK vuông BC nên DK là đường cao thứ 3 trong tam giác này
=> Ba đường thẳng CH, FK,AB đồng quy