cho tam giác ABC NỘI tiếp đường tròn (O). Biết góc A=60; B=70. Gọi M là điểm chính giữa cung nhỏ BC, I là giao điểm của AM và BC. a/ tính số đo cung nhỏ BC, số đo góc BOC. b/ so sánh các góc AIB và AMC :vvvv
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích:
Giả sử dựng được ΔABC thỏa mãn điều kiện.
Gọi O là tâm đường tròn nội tiếp tam giác.
⇒ O thuộc cung m chứa góc 120 º dựng trên đoạn BC.
+ Bán kính đường tròn nội tiếp ΔABC bằng 1
⇒ O cách BC 1cm
⇒ O thuộc d // BC và cách BC 1cm.
Vậy O là giao của cung m và đường thẳng d.
+ Khi đó ta dựng được đường tròn (O; 1) nội tiếp ΔABC
⇒ A là giao của tiếp tuyến đi qua B và C của đường tròn (O; 1).
Cách dựng:
+ Dựng BC = 4cm
+ Dựng đường thẳng (d) song song với BC và cách BC một khoảng là 1 cm.
+ Dựng cung m chứa góc 120 º trên đoạn BC.
+ (d) cắt cung m tại O.
+ Dựng đường tròn tâm O, bán kính 1cm.
+ Kẻ tiếp tuyến từ B và C đến (O; 1cm).
Hai tiếp tuyến cắt nhau tại A.
ΔABC là tam giác cần dựng.
Chứng minh:
+ Theo cách dựng có BC = 4cm .
+ O thuộc cung 120º dựng trên đoạn BC
+ A là giao của 2 tiếp tuyến
⇒ (O; 1cm) tiếp xúc với AB và AC
Mà khoảng cách từ O đến BC = 1cm
⇒ (O; 1cm) cũng tiếp xúc với BC
⇒ (O; 1cm) là đường tròn nội tiếp ΔABC
Vậy ΔABC có BC = 4cm, , đường tròn nội tiếp có bán kính 1cm thỏa mãn yêu cầu.
Biện luận:
Vì d cắt m tại hai điểm nên bài toán có hai nghiệm hình ΔABC và ΔA’BC như hình vẽ.
Phân tích:
Giả sử dựng được ΔABC thỏa mãn điều kiện.
Gọi O là tâm đường tròn nội tiếp tam giác.
⇒ O thuộc cung m chứa góc 120º dựng trên đoạn BC.
+ Bán kính đường tròn nội tiếp ΔABC bằng 1
⇒ O cách BC 1cm
⇒ O thuộc d // BC và cách BC 1cm.
Vậy O là giao của cung m và đường thẳng d.
+ Khi đó ta dựng được đường tròn (O; 1) nội tiếp ΔABC
⇒ A là giao của tiếp tuyến đi qua B và C của đường tròn (O; 1).
Cách dựng:
+ Dựng BC = 4cm
+ Dựng đường thẳng (d) song song với BC và cách BC một khoảng là 1 cm.
+ Dựng cung m chứa góc 120º trên đoạn BC.
+ (d) cắt cung m tại O.
+ Dựng đường tròn tâm O, bán kính 1cm.
+ Kẻ tiếp tuyến từ B và C đến (O; 1cm).
Hai tiếp tuyến cắt nhau tại A.
ΔABC là tam giác cần dựng.
Chứng minh:
+ Theo cách dựng có BC = 4cm .
+ O thuộc cung 120º dựng trên đoạn BC
+ A là giao của 2 tiếp tuyến
⇒ (O; 1cm) tiếp xúc với AB và AC
Mà khoảng cách từ O đến BC = 1cm
⇒ (O; 1cm) cũng tiếp xúc với BC
⇒ (O; 1cm) là đường tròn nội tiếp ΔABC
Vậy ΔABC có BC = 4cm, , đường tròn nội tiếp có bán kính 1cm thỏa mãn yêu cầu.
Biện luận:
Vì d cắt m tại hai điểm nên bài toán có hai nghiệm hình ΔABC và ΔA’BC như hình vẽ.
hjuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
a: Xét (O) có
\(\widehat{BAC}\) là góc nội tiếp chắn cung BC
Do đó: \(sđ\stackrel\frown{BC}=\widehat{BOC}=2\cdot\widehat{BAC}=120^0\)
b: M là điểm chính giữa của cung BC
=>\(sđ\stackrel\frown{MB}=sđ\stackrel\frown{MC}=\dfrac{sđ\stackrel\frown{BC}}{2}=60^0\)
Xét (O) có \(\widehat{AIB}\) là góc có đỉnh ở bên trong đường tròn chắn hai cung AB và MC
nên \(\widehat{AIB}=\dfrac{1}{2}\cdot\left(sđ\stackrel\frown{AB}+sđ\stackrel\frown{MC}\right)\)
=>\(\widehat{AIB}=\dfrac{1}{2}\left(sđ\stackrel\frown{AB}+sđ\stackrel\frown{MB}\right)=\dfrac{1}{2}\left(100^0+60^0\right)=80^0\)
Xét (O) có
\(\widehat{AMC}\) là góc nội tiếp chắn cung AC
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{AMC}=\widehat{ABC}=70^0\)
=>\(\widehat{AIB}>\widehat{AMC}\)