K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

BCNN(4;6)=12

=>BC(4;6)=B(12)

=>A=B

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

\(A =  \left\{ {0;1;2;3;4;5;6} \right\}\)

\(\,B = \left\{ {1;2;3;6;7;8} \right\}\)

Vậy

\(A \cap B = \left\{ {1;2;3;6} \right\}\)

\(A \cup B = \left\{ {0;1;2;3;4;5;6;7;8} \right\}  = \left\{ {x \in \mathbb{N}|\;x < 9} \right\}\)

\(A\;{\rm{\backslash }}\;B = \left\{ {0;4;5} \right\}\)

18 tháng 12 2020

a, \(A\cup B=(-4;5]\)

\(A\cap B=[-3;4)\)

\(A\backslash B=\left[4;5\right]\)

\(B\backslash A=\left(-4;-3\right)\)

b, \(A\cup B=\left(-3;7\right)\)

\(A\cap B=[1;2)\cup(3;5]\)

\(A\backslash B=\left[2;3\right]\)

\(B\backslash A=\left(-3;1\right)\cup\left(5;7\right)\)

c, \(A\cup B=\left[\dfrac{1}{2};3\right]\)

\(A\cap B=\left[1;\dfrac{3}{2}\right]\)

\(A\backslash B=[\dfrac{1}{2};1)\)

\(B\backslash A=(\dfrac{3}{2};3]\)

d, \(A\cup B=(-5;2]\cup(3;6]\)

\(A\cap B=\left\{0\right\}\cup[4;5)\)

\(A\backslash B=(0;2]\cup\left[-5;6\right]\)

\(B\backslash A=[-5;0)\cup\left(3;4\right)\)

18 tháng 12 2020

undefined

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Ta có: \(A = \left\{ {x \in \mathbb{Z}| - 2 \le x \le 3} \right\} = \{  - 2; - 1;0;1;2;3\} \)

Và \(B = \{ x \in \mathbb{R}|{x^2} - x - 6 = 0\}  = \{  - 2;3\} \)

Khi đó:

Tập hợp \(A\,{\rm{\backslash }}\,B\) gồm các phần tử thuộc A mà không thuộc B. Vậy\(A\,{\rm{\backslash }}\,B = \{  - 1;0;1;2\} \).

 Tập hợp \(B\,{\rm{\backslash }}\,A\) gồm các phần tử thuộc B mà không thuộc A. Vậy \(B\,{\rm{\backslash }}\,A = \emptyset \)

17 tháng 9 2023

\(A=\left\{x\in R|\left(x-2x^2\right)\left(x^2-3x+2\right)=0\right\}\)

Giải phương trình sau :

 \(\left(x-2x^2\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow x\left(1-2x\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1-2x=0\\x-1=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\\x=2\end{matrix}\right.\)

\(\Rightarrow A=\left\{0;\dfrac{1}{2};1;2\right\}\)

\(B=\left\{n\in N|3< n\left(n+1\right)< 31\right\}\)

Giải bất phương trình sau :

\(3< n\left(n+1\right)< 31\)

\(\Leftrightarrow\left\{{}\begin{matrix}n\left(n+1\right)>3\\n\left(n+1\right)< 31\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n^2+n-3>0\\n^2+n-31< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n< \dfrac{-1-\sqrt[]{13}}{2}\cup n>\dfrac{-1+\sqrt[]{13}}{2}\\\dfrac{-1-5\sqrt[]{5}}{2}< n< \dfrac{-1+5\sqrt[]{5}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1-5\sqrt[]{5}}{2}< n< \dfrac{-1-\sqrt[]{13}}{2}\\\dfrac{-1+\sqrt[]{13}}{2}< n< \dfrac{-1+5\sqrt[]{5}}{2}\end{matrix}\right.\)

Vậy \(B=\left(\dfrac{-1-5\sqrt[]{5}}{2};\dfrac{-1-\sqrt[]{13}}{2}\right)\cup\left(\dfrac{-1+\sqrt[]{13}}{2};\dfrac{-1+5\sqrt[]{5}}{2}\right)\)

\(\Rightarrow A\cap B=\left\{2\right\}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

\(E = \{ x \in \mathbb{N}|x < 10\}  = \{ 0;1;2;3;4;5;6;7;8;9\} \)

\(A = \{ x \in E|x\) là bội của 3\(\} \)\( = \{ 0;3;6;9\} \)

\(B = \{ x \in E|x\) là ước của 6\(\} \)\( = \{1;2;3;6\} \)

Ta có: \(A\backslash B = \left\{ {0;9} \right\}\), \(B\backslash A = \left\{ {1;2} \right\}\)

\({C_E}A = \{ 1;2;4;5;7;8\} ,\;{C_E}B = \{ 0;4;5;7;8;9\} \)

\(A \cap B =  \{ 3;6\} \Rightarrow {C_E}(A \cap B) = {C_E}B = \{0;1;2;4;5;7;8;9\} \)

\(A \cup B = \{ 0;1;2;3;6;9\} \Rightarrow {C_E}(A \cup B) = {C_E}A = \{ 4;5;7;8\} \)

21 tháng 7 2023

(Bấm máy tính tìm nghiệm)

\(A=\left\{-2;-1;2\right\}\)

\(B=\left\{0;1;2;3\right\}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

\(E = \{ x \in \mathbb{N}|x < 8\}  = \{ 0;1;2;3;4;5;6;7\} \)

a) Ta có: \(A\backslash B = \left\{ {0;1;2} \right\}\), \(B\backslash A = \left\{ 5 \right\},\)\((A\backslash B) \cap {\rm{(}}B\backslash A) = \emptyset \)

b) Ta có: \(A \cap B = \{ 3;4\} ,\;{C_E}(A \cap B) = \{ 0;1;2;5;6;7\} \)

\({C_E}A = \{ 5;6;7\} ,\;{C_E}B = \{ 0;1;2;6;7\}  \Rightarrow ({C_E}A) \cap ({C_E}B) = \{ 6;7\} \)

c) Ta có: \(A \cup B = \{ 0;1;2;3;4;5\} ,\;{C_E}(A \cup B) = \{ 6;7\} \)

\({C_E}A = \{ 5;6;7\} ,\;{C_E}B = \{ 0;1;2;6;7\}  \Rightarrow ({C_E}A) \cup ({C_E}B) = \{ 0;1;2;5;6;7\} \)