\(CD\perp BC\)
\(AH\perp BC\)
\(\Rightarrow CD//AH\)(cùng vuông góc với BC)
CM tương tự ta có
\(AD//HC\)(cùng vuông góc với AB)
-> AHCD là hình bình hành
->HA=CD ; AD=HC
mà HA cùng hướng với CD
AD cùng hướng với HC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
AB đồng dạng với AD với tỉ số tỉ số k = 1 (vì hai cạnh đối sát của hình bình hành bằng nhau và song song).
Vậy diện tích tam giác ABH bằng diện tích tam giác ADK với tỷ số k.
Như vậy: S_ABH = k.S_ADK.
Tuy nhiên, ta cũng có: S_ABH = AB.AH và S_ADK = AD.AK (vì diện tích một tam giác bằng nửa tích các cạnh tạo thành đôi một với nó).
Vậy ta có: AB.AH = AD.AK.
Đây chính là điều cần chứng minh.
a: AH=1/3(24+AH)
=>2/3AH=8
=>AH=12cm
S=12*24=288cm2
b: AF*BC=AH*DC
=>AF*16=288
=>AF=18cm
Sửa đề: Đường cao BH
a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
\(\widehat{C}\) chung
Do đó: ΔBDC\(\sim\)ΔHBC
b: Áp dụng định lí Pytago vào ΔBDC vuông tại B, ta được:
\(DC^2=BD^2+BC^2\)
\(\Leftrightarrow BD^2=25^2-15^2=400\)
hay BD=20(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBDC vuông tại B có BH là đường cao ứng với cạnh huyền DC, ta được:
\(\left\{{}\begin{matrix}BD^2=HD\cdot DC\\BC^2=HC\cdot DC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}HD=16\left(cm\right)\\HC=9\left(cm\right)\end{matrix}\right.\)