cho tam giác ABC, D thuộc BC , E thuộc AC, F thuộc AB ; AD,BE,CF là 3 đường cao cắt nhau tại H. Chứng minh: a)\(\frac{AH}{AD}+\frac{BH}{BE}+\frac{CH}{CF}=2\)
b)\(\frac{AH}{HD}+\frac{BH}{HE}+\frac{CH}{HF}\ge6\)
MIK CẦN GẤP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DE//AC
=>DE/AC=BE/BC
=>DE/8=BE/12
=>DE=2/3BE
EF//AB
=>EF/AB=CE/CB
=>CE/12=EF/6
=>EF=1/2CE
mà EF=DE
nên 2/3BE=1/2CE
mà BE+CE=12
nên BE=36/7cm; CE=48/7cm
=>DE=2/3*BE=2/3*36/7=72/21=24/7(cm)
a) Ta có: \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
Do đó: \(BC^2=AB^2+AC^2\)(=100)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
b) Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔBAD=ΔBED(cạnh huyền-góc nhọn)
Suy ra: DA=DE(Hai cạnh tương ứng)
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(Cmt)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: DF=DC(Hai cạnh tương ứng)
Xét ΔDFC có DF=DC(cmt)
nên ΔDFC cân tại D(Định nghĩa tam giác cân)
k minh minh giai
giúp mik vs
hứa sẽ k nếu đúng và đầy đủ