1)cho tam giác ABC có AB=2AC và đường phân giác AD .gọi r ;r1;r2 lần lượt là bán kinhs đường tròn nội tiếp tam giác ABC ;ACD và ABD
cmr \(AD=\frac{p.r}{3}\left(\frac{1}{r1}+\frac{2}{r2}\right)-p\)(p là nửa chu vi tam giác ABC
2) cho đường tròn (O) và đỉnh A cố định bên ngoài đường tròn .kẻ tiếp tuyến AB và cát tuyến ADC (AC<AD).hỏi trọng tâm tam giác BCD chạy tên đường bào khi cát tuyến ADC thay đổi (AB cố định )
Ta có:
\(S_{ABC}=pr;S_{ACD}=\frac{AC+CD+AD}{2}.r_1;S_{ABD}=\frac{AB+BD+AD}{2}.r_2\)
Vì AD là tia phân giác \(\widehat{BAC}\)nên đường cao từ D đến AB và AC là bằng nhau.
\(\Rightarrow\hept{\begin{cases}S_{ACD}=\frac{S_{ABC}}{3}\\S_{ABD}=\frac{2S_{ABC}}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{AC+CD+AD}{2}.r_1=\frac{pr}{3}\\\frac{AB+BD+AD}{2}.r_2=\frac{2pr}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}AC+CD+AD=\frac{2pr}{3r_1}\left(1\right)\\AB+BD+AD=\frac{4pr}{3r_2}\left(2\right)\end{cases}}\)
Lấy (1) + (2) ta dược
\(AC+CD+AB+BD+2AD=\frac{2pr}{3r_1}+\frac{4pr}{3r_2}\)
\(\Leftrightarrow2p+2AD=\frac{2pr}{3r_1}+\frac{4pr}{3r_2}\)
\(\Leftrightarrow AD=\frac{pr}{3r_1}+\frac{2pr}{3r_2}-p=\frac{pr}{3}\left(\frac{1}{r_1}+\frac{2}{r_2}\right)-p\)
Câu 2 ai vẽ hộ cái hình đi