Cho tam giác abc có AB=6cm;AC=8cm;Bc=10cm. chứng tỏ tam giác ABC vuông tại A,Tia phân giác của góc B cắt AC tại D, kẻ DE vuông góc với BC tại E
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ABC:\)
\(BC^2=10^2=100.\\ AB^2+AC^2=6^2+8^2=100.\\ \Rightarrow BC^2=AB^2+AC^2.\)
\(\Rightarrow\Delta ABC\) vuông tại A (Pytago đảo).
Chu vi của tam giác ABC là 21cm \(\Rightarrow AB+AC+BC=21 \Leftrightarrow BC=21-6-7=8 (cm)\)
\(\Rightarrow BC>AC>AB\)
\(\Rightarrow \hat{A} > \hat{B} > \hat{C}\) (Quan hệ giữa góc và cạnh đối diện trong tam giác).
Áp dụng ĐL pi - ta - go đảo :
\(AB^2+BC^2=AC^2\)
\(< =>4.5^2+6^2=7.5^2\)
Do \(4.5^2+6^2=7.5^2\)đúng
=>ĐPCM
a) Xét ΔABC có AB=BC>AC(6cm=6cm>4cm)
mà góc đối diện với cạnh AB là góc ACB
và góc đối diện với cạnh BC là góc BAC
và góc đối diện với cạnh AC là góc ABC
nên \(\widehat{ACB}=\widehat{BAC}>\widehat{ABC}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
b) Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=AB^2+BC^2\)
\(\Leftrightarrow BC^2=AC^2-AB^2=10^2-6^2=64\)
hay BC=8(cm)
Xét ΔABC có AB<BC<AC(6cm<8cm<10cm)
mà góc đối diện với cạnh AB là góc ACB
và góc đối diện với cạnh BC là góc BAC
và góc đối diện với cạnh AC là góc ABC
nên \(\widehat{ACB}< \widehat{BAC}< \widehat{ABC}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
a) Ta có:
\(BC^2=AB^2+AC^2\)
\(10^2=6^2+8^2=36+64=100\)
Áp dụng định lí Pytago đảo
⇒ Tam giác ABC vuông tại A
b) 1/ Xét tam giác ABD và tam giác EBD có
^A=^E=90o(gt)
BD: cạnh chung
^B1=^B2(BD phân giác ^B)
⇒ Tam giác ABD= tam giác EBD
2/ Em xem lại đề ha