K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2019


A B C 3 4 H I D

a, C/m ΔABC ∼ ΔHAC ⇒ AC2 = CH . BC
Xét ΔvABC và ΔvHAC. Ta có: \(\widehat{ACB}\) chung (gt)
⇒ ΔABC ∼ ΔHAC
Nên: \(\frac{AC}{CH}=\frac{BC}{AC}\)
⇒ AC2 = CH . BC
b, Tính AD, DB?
Ta có: ΔABC vuông tại A (gt)
⇒ BC2 = AB2 + AC2 = 32 + 42 = 25
Nên: BC = \(\sqrt{25}=5\left(cm\right)\)
Mà: CD là tia phân giác của \(\widehat{ACB}\) (gt)
\(\frac{AD}{AC}=\frac{DB}{BC}\)
Nên: \(\frac{AD}{AC}=\frac{DB}{BC}=\frac{AD+DB}{AC+BC}=\frac{AB}{AC+BC}\)
Hay: \(\frac{AD}{4}=\frac{DB}{5}=\frac{3}{4+5}=\frac{1}{3}\)
\(AD=\frac{4}{3}\left(cm\right)\)
\(DB=\frac{5}{3}\left(cm\right)\)


21 tháng 4 2019

Cho hình chữ nhật ABCD. Vẽ AH vuông góc BD (H\(\in\)BD), HK//CD (K\(\in\)BC).

a) CM: tam giác ADH đồng dạng với tam giác DBC

b) CM: CD.BK=AH.BH

c) Cho biết AB=5cm, HB=4cm. Tính BK?

3:

góc C=90-50=40 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>4/BC=sin40

=>\(BC\simeq6,22\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)

1:

góc C=90-60=30 độ

Xét ΔABC vuông tại A có

sin B=AC/BC

=>3/BC=sin60

=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)

=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)

17 tháng 8 2023

còn câu 2 

 

30 tháng 4 2019

a) Áp dụng Định lý Pythagoras cho tam giác vuông ABC, ta được:

AB2+AC2=32+62=45=BC2=>BC=\(\sqrt{45}\)cm

b) Xét \(\Delta\)BAD và \(\Delta\)EAD:

                 AE=AB(Do cùng bằng 3 cm)

                BAD=EAD

                AD chung

=>\(\Delta\)BAD=\(\Delta\)EAD(c-g-c)

c) Xét \(\Delta\)ABC và \(\Delta\)AEM:

                A chung

                AB=AE

                ABC=AEM( Suy ra trực tiếp từ câu b)

=>\(\Delta\)ABC=\(\Delta\)AEM=>AC=AM=>\(\Delta\)CAM vuông cân tại A

d) Áp dụng Định lý Pythagoras cho tam giác vuông CAM, ta được:

AC2+AM2=MC2=>2.AC2=MC2( Do \(\Delta\)CAM vuông cân tại A)

Lại có:BC2=AC2+AB2

Do: AC>AB(gt)

Nên:MC>BC

Mặt khác:\(\Delta\)ABC=\(\Delta\)AEM(chứng minh trên)=>BC=ME

Suy ra MC>ME

21 tháng 6 2018

Bài 1:

Gọi M là trung điểm của BC

Vẽ BE là tia phân giác của góc B, E  thuộc AC

nối M với E

ta có: BM =CM  = 1/2.BC ( tính chất trung điểm)

AB=1/2.BC (gt)

=> BM = CM=  AB ( =1/2.BC)

Xét tam giác ABE và tam giác MBE

có: AB = MB (chứng minh trên)

góc ABE = góc MBE (gt)

BE là cạnh chung

\(\Rightarrow\Delta ABE=\Delta MBE\left(c-g-c\right)\)

=> góc BAE = góc BME = 90 độ ( 2 cạnh tương ứng)

=> góc BME = 90 độ

\(\Rightarrow BC\perp AM⋮M\)

Xét tam giác BEM vuông tại M và tam giác CEM vuông tại M

có: BM=CM(gt)

EM là cạnh chung

\(\Rightarrow\Delta BEM=\Delta CEM\left(cgv-cgv\right)\)

=> góc EBM = góc ECM ( 2 cạnh tương ứng)

mà góc EBM = góc ABE = 1/2. góc B (gt)

=> góc EBM = góc ABE = góc ECM

Xét tam giác ABC vuông tại A
có: \(\widehat{B}+\widehat{ECM}=90^0\) ( 2 góc phụ nhau)

=> góc EBM + góc ABE + góc ECM = 90 độ

=> góc ECM + góc ECM + góc ECM = 90 độ

=> 3.góc ECM = 90 độ

góc ECM = 90 độ : 3

góc ECM = 30 độ

=> góc C = 30 độ

a: Xet ΔABD vuông tại B và ΔAHD vuông tại H có

AD chung

góc BAD=góc HAD

=>ΔABD=ΔAHD

b; AB=AH

DB=DH

=>AD là trung trực của BH

c: Xet ΔDBI vuông tại B và ΔDHC vuông tại H có

DB=DH

góc BDI=góc HDC

=>ΔBDI=ΔHDC

=>DI=DC

=>ΔDIC cân tại D

d: Xét ΔAIC có AB/BI=AH/HC

nên BH//IC

e: AD vuông góc BH

BH//IC

=>AD vuông góc IC

12 tháng 5 2018

Xét Tam giác ABC có : góc BAC=90 độ (gt) 

=> BC^2=AC^2+AB^2(định lý Pytago)

=>BC^2=12^2+9^2

BC^2=225

=>BC=15cm