Cho tam giác ABC vuông tại A; AB<AC. Kẻ AH vuông góc BC. Lấy D thuộc HC: HD=HB. Kẻ CE vuông góc AD kéo dài. Chứng minh:
a) Góc BAH = ACB
b) CB là phân giác góc ACE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa đề nha
cho tam giác ABC vuông tại A , trên tia đối tia AB lấy đỉnh M sao cho AB=AM a. CMR : tam giác ABC = tam giác AMC
b. kẻ AH vuông góc với BC tại H kẻ AK vuông gói với MC tại K CMR : BH = MK
c. CMR : HK // BM
Xét \(\Delta BACvà\Delta MACcó\)
AC:chung
AM=AB(gt)
\(\widehat{MAC}=\widehat{BAC}\)( vì AC⊥BC)
a) Tam giác ABC vuông tại A => góc ACB + ABC = 90o (1)
Do AH vuông góc với BC => tam giác AHB vuông tạo H
=> góc BAH + ABC = 90o (2)
từ (1)(2) => góc ACB = BAH (3)
b) Tam giác ADB có AH là đường cao đồng thời là đường trung tuyến (do HD = HB)
=> tam giác ADB cân tại A => AH là phân giác của góc DAB
=> góc BAH = góc HAD (4)
Ta có: tam giác ADH vuông tại H => góc HAD + ADH = 90o
Tam giác CED vuông tại E => góc ECD + CDE = 90o
Mặt khác, góc ADH = CDE (do đối đỉnh)
nên góc HAD = ECD (5)
Từ (3)(4)(5) => góc ACB = ECD => CB là phân giác của góc ACE
k mk đi làm ơn
mk đang bị âm điểm