Cho hai tập hợp số :
\(A=\left\{4;5;6;7;8\right\},B=\left\{13;14;15\right\}\)
a) Có thể lập được bao nhiêu tổng dạng (a + b) với \(a\in A,b\in B\) ?
b) Trong các tổng trên có bao nhiêu tổng chia hết cho 3 ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A ∪ B = (-∞; 15)
A ∩ B = [-2; 3)
b) Để A ⊂ B thì:
m - 1 > -2 và m + 4 ≤ 3
*) m - 1 > -2
m > -2 + 1
m > -1
*) m + 4 ≤ 3
m ≤ 3 - 4
m ≤ -1
Vậy không tìm được m thỏa mãn đề bài
a, A có \(\left(201-9\right):3+1=65\left(phần.tử\right)\)
\(B=A\) nên cũng có 65 phần tử
b, \(C=A\cap B=\left\{9;12;15;...;201\right\}\)
\(C=\left\{x\in N|x⋮3;9\le x\le201\right\}\)
a) \(A = \{ 3;2;1;0; - 1; - 2; - 3; -4; ...\} \)
Tập hợp B là tập các nghiệm nguyên của phương trình \(\left( {5x - 3{x^2}} \right)\left( {{x^2} + 2x - 3} \right) = 0\)
Ta có:
\(\begin{array}{l}\left( {5x - 3{x^2}} \right)\left( {{x^2} + 2x - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}5x - 3{x^2} = 0\\{x^2} + 2x - 3 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left[ \begin{array}{l}x = 0\\x = \frac{5}{3}\end{array} \right.\\\left[ \begin{array}{l}x = 1\\x = - 3\end{array} \right.\end{array} \right.\end{array}\)
Vì \(\frac{5}{3} \notin \mathbb Z\) nên \(B = \left\{ { - 3;0;1} \right\}\).
b) \(A \cap B = \left\{ {x \in A|x \in B} \right\} = \{ - 3;0;1\} = B\)
\(A \cup B = \) {\(x \in A\) hoặc \(x \in B\)} \( = \{ 3;2;1;0; - 1; - 2; - 3;...\} = A\)
\(A\,{\rm{\backslash }}\,B = \left\{ {x \in A|x \notin B} \right\} = \{ 3;2;1;0; - 1; - 2; - 3;...\} {\rm{\backslash }}\;\{ - 3;0;1\} = \{ 3;2; - 1; - 2; - 4; - 5; - 6;...\} \)
Số tập hợp con có k phần tử của tập hợp A (có 18 phần tử)
\(C_{18}^k\left(k=1,.....,18\right)\)
Để tìm max \(C_{18}^k,k\in\left\{1,2,.....,18\right\}\) (*), ta tiến hành giải bất phương trình sau :
\(\frac{C_{18}^k}{C_{18}^{k+1}}< 1\)
\(\Leftrightarrow C_{18}^k< C_{18}^{k+1}\)
\(\Leftrightarrow\frac{18!}{\left(18-k\right)!k!}< \frac{18!}{\left(17-k\right)!\left(k+1\right)!}\)
\(\Leftrightarrow\left(18-k\right)!k!>\left(17-k\right)!\left(k+1\right)!\)
\(\Leftrightarrow17>2k\)
\(\Leftrightarrow k< \frac{17}{2}\)
Điều kiện (*) nên k = 1,2,3,.....8
Suy ra \(\frac{C_{18}^k}{C_{18}^{k+1}}>1\) khi k = 9,10,...,17
Vậy ta có
\(C^1_{18}< C_{18}^2< C_{18}^3< .........C_{18}^8< C_{18}^9>C_{18}^{10}>.....>C_{18}^{18}\)
Vậy \(C_{18}^k\) đạt giá trị lớn nhất khi k = 9. Như thế số tập hợp con gồm 9 phần tử của A là số tập hợp con lớn nhất.
a, A ∩ B = {4;10;16}
b, A = {0;4;8;12;16;20;24;28;32;36;40;44;48}
B = {0;8;16;24;32;40;48;56}
A ∩ B = {0;8;16;24;32;40;48}
c, A = {10;15;20;25;30;35;40;45;50;55;60;65;70;75;80;85;90;95}
B = {10;20;30;40;50;60;70;80;90}
A ∩ B = B
d, A = {1;3;5;7;9;11;13;15;17;19}
B = {0;2;4;6;8;10;12;14;16;18}
A ∩ B = ∅
Lập bảng ta thấy :
a) Có 15 tổng đc tạo thành
( Hình e vẽ k đẹp lắm :v )
b) Trog đó có 5 tổng chia hết cho 3 đó là : 18,18,21,21,21
Như vậy có 2 tổng khác nhau chia hết cho 3 là 18 và 21