(P) đi qua A( -1;5) , B(-1;6) và có tug độ đỉnh là -1. Hãy xác điịnh parabol(P): y=ax^2 + bx + c
GIÚP MÌNH VỚI M.N , TKS NHÌU ah
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Vì (P) đi qua A(0;1); B(1;2); C(3;-1) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot0^2+b\cdot0+c=1\\a\cdot1^2+b\cdot1+c=2\\a\cdot3^2+b\cdot3+c=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=1\\a+b+1=2\\9a+3b+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1\\a+b=1\\9a+3b=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=1\\9a+9b=9\\9a+3b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1\\6b=11\\a+b=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=1\\b=\dfrac{11}{6}\\a=1-\dfrac{11}{6}=-\dfrac{5}{6}\end{matrix}\right.\)
b: Vì (P) đi qua M(0;-1); N(1;0) và P(2;3) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot0^2+b\cdot0+c=-1\\a\cdot1^2+b\cdot1+c=0\\a\cdot2^2+b\cdot2+c=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=-1\\a+b-1=0\\4a+2b-1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\a+b=1\\4a+2b=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=-1\\a+b=1\\2a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\-a=-1\\a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\a=1\\b=0\end{matrix}\right.\)
c: Vì (P) đi qua M(1;-2); N(0;4); P(2;1) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot1^2+b\cdot1+c=-2\\a\cdot0^2+b\cdot0+c=4\\a\cdot2^2+b\cdot2+c=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a+b+c=-2\\c=4\\4a+2b+c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b=-2-c=-6\\4a+2b=1-4=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=4\\4a+4b=-24\\4a+2b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\2b=-21\\a+b=-6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=4\\b=-\dfrac{21}{2}\\a=-6-b=-6+\dfrac{21}{2}=\dfrac{9}{2}\end{matrix}\right.\)
d: Hoành độ đỉnh là 2 nên -b/2a=2
=>b=-4a(1)
Thay x=3 và y=1 vào (P), ta được:
\(a\cdot3^2+b\cdot3+c=1\)
=>\(9a+3b+c=1\left(2\right)\)
Thay x=-1 và y=2 vào (P), ta được:
\(a\cdot\left(-1\right)^2+b\left(-1\right)+c=2\)
=>a-b+c=2(3)
Từ (1),(2),(3), ta có hệ phương trình:
\(\left\{{}\begin{matrix}b=-4a\\9a+3b+c=1\\a-b+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-4a\\9a-12a+c=1\\a+4a+c=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=-4a\\-3a+c=1\\5a+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-4a\\-8a=-1\\5a+c=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=\dfrac{1}{8}\\b=-4\cdot\dfrac{1}{8}=-\dfrac{1}{2}\\c=2-5a=2-\dfrac{5}{8}=\dfrac{11}{8}\end{matrix}\right.\)
\(a,\) Gọi pt đường thẳng \(\left(d\right)\) là \(y=ax+b\)
Ta có \(\left(d\right)\) đi qua \(A\left(-3;0\right),B\left(0;2\right)\) nên \(\left\{{}\begin{matrix}0=-3a+b\\2=0a+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{2}{3}\\b=2\end{matrix}\right.\)
Vậy đths là \(\left(d\right):y=\dfrac{2}{3}x+2\)
\(b,\) Gọi pt đường thẳng \(\left(d\right)\) là \(y=ax+b\)
Ta có hệ pt \(\left\{{}\begin{matrix}1=0a+b\\0=-a+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
Vậy đths là \(\left(d\right):y=x+1\)
a,a, Gọi pt đường thẳng (d)(d) là y=ax+by=ax+b
Ta có (d)(d) đi qua A(−3;0),B(0;2)A(−3;0),B(0;2) nên {0=−3a+b2=0a+b⇔⎧⎨⎩a=23b=2{0=−3a+b2=0a+b⇔{a=23b=2
Vậy đths là (d):y=23x+2(d):y=23x+2
b,b, Gọi pt đường thẳng (d)(d) là y=ax+by=ax+b
Ta có hệ pt {
a) phương trình tổng quát của đường thẳng đi qua \(M\left(1;-2\right)\) có VTPT\(\left(2;3\right)\) là \(2\left(x-1\right)+3\left(y+2\right)=0\) \(\Leftrightarrow2x+3y+4=0\)
vì đường thẳng này nhận \(\overrightarrow{u}\left(2;3\right)\) làm VTPT \(\Rightarrow\) nó nhận \(\overrightarrow{n}\left(3;-2\right)\) làm VTCP \(\Rightarrow\) phương trình tham số của nó là \(\left\{{}\begin{matrix}x=1+3t\\y=-2-2t\end{matrix}\right.\)
b) ta có đường thẳng d nhận \(\overrightarrow{u}\left(-2;1\right)\) làm VTCP \(\Rightarrow\) nhận \(\overrightarrow{n}\left(1;2\right)\) làm VTPT
phương trình tổng quát của đường thẳng đi qua \(N\left(0;-1\right)\) và nhận \(\overrightarrow{n}\left(1;2\right)\) làm VTPT là \(1\left(x-0\right)+2\left(y+1\right)=0\Leftrightarrow x+2y+2=0\)
vì nó nhận \(\overrightarrow{u}\left(-2;1\right)\) làm VTCP \(\Rightarrow\) phương trình tham số của nó là : \(\left\{{}\begin{matrix}x=-2t\\y=-1+t\end{matrix}\right.\)
c) ta có d đi qua điểm M và N \(\Rightarrow\) nó nhận \(\overrightarrow{MN}\left(2;3\right)\) làm VTCP
\(\Rightarrow\) phương trình tham số của đường thẳng đi qua \(M\left(1;-1\right)\) và nhận \(\overrightarrow{MN}\) làm VTCP là : \(\left\{{}\begin{matrix}x=1+2t\\y=-1+3t\end{matrix}\right.\)
ta có d nhận \(\overrightarrow{MN}\left(2;3\right)\) làm VTCP \(\Rightarrow\) d nhận \(\overrightarrow{n}\left(3;-2\right)\) làm VTPT
\(\Rightarrow\) phương trình tổng quát của d là : \(3\left(x-2\right)-2\left(y-3\right)=0\Leftrightarrow3x-2y=0\)
câu d và câu e ) bn chỉ cần tìm VTPT của 2 đường thẳng đó và \(\Rightarrow\) VTCP là ra hết thôi .
gợi ý : đường thẳng \(2x-3y-3=0\) có \(\overrightarrow{u}\left(2;-3\right)\) là VTPT
đường thẳng \(x-y+5=0\) có \(\overrightarrow{n}\left(1;-1\right)\) là VTPT
Theo đề, ta có:
\(\left\{{}\begin{matrix}a-b+c=5\\a-b+c=6\\-\dfrac{b^2-4ac}{4a}=-1\end{matrix}\right.\)=>a,b,c không có giá trị